# FIRM AND WORKER DYNAMICS IN AN AGING LABOR MARKET

Niklas Engbom March 16, 2018

Banca d'Italia

# BACKGROUND





# BACKGROUND





 $\circ~$  Exploit predictable variation in aging across US states

- $\circ~$  Exploit predictable variation in aging across US states
- $\circ~$  Aging predicts  $40{-}50\%~of~declines$  & negative growth effect

- Exploit predictable variation in aging across US states
- $\circ~$  Aging predicts  $40{-}50\%$  of declines & negative growth effect

### 2. Structural assessment

 $\circ~$  Theory that links firm dyn., worker dyn. & growth to aging

- Exploit predictable variation in aging across US states
- $\circ~$  Aging predicts  $40{-}50\%$  of declines & negative growth effect

#### 2. Structural assessment

- $\circ~$  Theory that links firm dyn., worker dyn. & growth to aging
- 40–50% of declines in firm & worker dynamism and  $-\frac{1}{4}$  percentage point in annual economic growth

- Exploit predictable variation in aging across US states
- $\circ~$  Aging predicts  $40{-}50\%$  of declines & negative growth effect

#### 2. Structural assessment

- $\circ~$  Theory that links firm dyn., worker dyn. & growth to aging
- 40–50% of declines in firm & worker dynamism and  $-\frac{1}{4}$  percentage point in annual economic growth
- Half due to equilibrium effects

#### **GROWTH IN FRICTIONAL LABOR MARKETS**

- Bean & Pissarides ('93); Aghion & Howitt ('94); Mortensen & Pissarides ('98); Postel-Vinay ('98); Hornstein et al. ('07); Michau ('13)
- My contribution: Endogenous growth & on-the-job search

#### DECLINING DYNAMISM, SECULAR STAGNATION

- Gordon ('12); Hyatt & Spletzer ('13); Davis & Haltiwanger ('14); Fernald ('14); Malloy et al ('14); Karahan et al ('16); Hsieh & Klenow ('17)
- My contribution: Structural framework & quant. assessment of aging

- 1. Cross-state Evidence of the Impact of Aging
- 2. A Job Ladder with Creative Destruction
- 3. STRUCTURAL ESTIMATE OF THE IMPACT OF AGING
  - $\circ~$  Life-cycle firm & worker dynamics
  - $\circ~$  Impact of aging
  - Decomposing the mechanism

# CROSS-STATE EVIDENCE ON THE IMPACT OF AGING

 $\circ\,$  State-year data on dynamism & age composition 1978–2014 $\,$ 

 $\circ\,$  Regress dynamism on share 40–64, controlling for state + year

$$\log(y_{st}) = \alpha \log(share_{st}^{40-64}) + \xi_s + \xi_t + \mathbf{X}_{st}\beta \qquad +\varepsilon_{st}$$

• Standard errors clustered at state and year

 $\circ\,$  State-year data on dynamism & age composition 1978–2014 $\,$ 

 $\circ\,$  Regress dynamism on share 40–64, controlling for state + year

$$\log\left(y_{st}^{a}\right) = \alpha \log\left(share_{st}^{40-64}\right) + \xi_{s} + \xi_{t} + \mathbf{X}_{st}\beta + \xi_{a} + \varepsilon_{st}^{a}$$

• Standard errors clustered at state and year

• Variation in timing & magnitude of aging across states

Figure II: Fraction aged 40-64 in four selected states



• Differential mobility in response to temporary variation

• Differential mobility in response to temporary variation

#### INSTRUMENT CURRENT AGE COMPOSITION WITH

- 1. 10-year lagged age composition
  - Only effect on dynamism through current age composition
  - Strong explanatory power on current age composition

• Differential mobility in response to temporary variation

#### INSTRUMENT CURRENT AGE COMPOSITION WITH

- 1. 10-year lagged age composition
  - $\circ~$  Only effect on dynamism through current age composition
  - $\circ~$  Strong explanatory power on current age composition
- 2. Birth rates 40–64 years earlier
  - $\circ~$  Only effect on dynamism through current age composition
  - Decent explanatory power on current age composition

# FIRM DYNAMISM

|                                 | (1)            | (2)            | (3)            | (4)                    | (5)            | (6)            |  |  |  |  |
|---------------------------------|----------------|----------------|----------------|------------------------|----------------|----------------|--|--|--|--|
|                                 | LABOR FORCE    |                |                | WORKING AGE POPULATION |                |                |  |  |  |  |
|                                 | OLS            | IV I           | IV II          | OLS                    | IV I           | IV II          |  |  |  |  |
| Panel A: Establishment dynamics |                |                |                |                        |                |                |  |  |  |  |
| Job reallocation                | -0.448***      | $-0.527^{***}$ | $-1.183^{***}$ | $-0.518^{***}$         | -0.539***      | $-0.978^{***}$ |  |  |  |  |
|                                 | (0.127)        | (0.191)        | (0.256)        | (0.124)                | (0.186)        | (0.205)        |  |  |  |  |
| Turnover                        | -0.630***      | -0.961***      | $-1.573^{***}$ | $-0.774^{***}$         | $-0.984^{***}$ | -1.300***      |  |  |  |  |
|                                 | (0.203)        | (0.268)        | (0.458)        | (0.202)                | (0.256)        | (0.374)        |  |  |  |  |
| Entry                           | $-0.668^{***}$ | -0.999***      | $-1.374^{***}$ | $-0.753^{***}$         | $-1.022^{***}$ | -1.136***      |  |  |  |  |
|                                 | (0.189)        | (0.247)        | (0.498)        | (0.188)                | (0.245)        | (0.409)        |  |  |  |  |
| Exit                            | -0.600**       | -0.940***      | $-1.753^{***}$ | -0.809***              | $-0.962^{***}$ | $-1.449^{***}$ |  |  |  |  |
|                                 | (0.243)        | (0.322)        | (0.480)        | (0.239)                | (0.304)        | (0.389)        |  |  |  |  |
| PANEL B: FIRM DYNAMICS          |                |                |                |                        |                |                |  |  |  |  |
| Turnover                        | -0.764***      | -1.266***      | -1.680***      | -0.923***              | $-1.296^{***}$ | $-1.411^{***}$ |  |  |  |  |
|                                 | (0.230)        | (0.302)        | (0.455)        | (0.223)                | (0.299)        | (0.394)        |  |  |  |  |
| Entry                           | -0.827***      | -1.361***      | -1.455***      | -0.932***              | -1.393***      | -1.221***      |  |  |  |  |
|                                 | (0.199)        | (0.278)        | (0.506)        | (0.195)                | (0.291)        | (0.440)        |  |  |  |  |
| Exit                            | -0.712**       | $-1.203^{***}$ | $-1.795^{***}$ | $-0.921^{***}$         | $-1.231^{***}$ | $-1.484^{***}$ |  |  |  |  |
|                                 | (0.298)        | (0.355)        | (0.519)        | (0.283)                | (0.339)        | (0.429)        |  |  |  |  |

|                                   | (1)         | (2)      | (3)      | (4)       | (5)                    | (6)      |  |  |  |  |
|-----------------------------------|-------------|----------|----------|-----------|------------------------|----------|--|--|--|--|
|                                   | LABOR FORCE |          |          | Work      | WORKING AGE POPULATION |          |  |  |  |  |
| _                                 | OLS         | IV I     | IV II    | OLS       | IV I                   | IV II    |  |  |  |  |
| Panel C: Worker dynamics          |             |          |          |           |                        |          |  |  |  |  |
| EU                                | -0.439***   | -0.924** | -0.476   | -0.494*** | -0.939**               | -0.425   |  |  |  |  |
|                                   | (0.145)     | (0.375)  | (0.582)  | (0.159)   | (0.406)                | (0.506)  |  |  |  |  |
| $_{ m JJ}$                        | -0.477*     | -0.113   | -1.999*  | -0.621*** | -0.128                 | -3.165** |  |  |  |  |
|                                   | (0.229)     | (0.732)  | (1.027)  | (0.218)   | (0.829)                | (1.310)  |  |  |  |  |
| UE                                | -0.088      | -0.225   | -0.744   | -0.021    | -0.228                 | -0.591   |  |  |  |  |
|                                   | (0.126)     | (0.273)  | (0.535)  | (0.123)   | (0.280)                | (0.463)  |  |  |  |  |
| PANEL D: GROWTH IN GDP PER WORKER |             |          |          |           |                        |          |  |  |  |  |
| Growth                            | -0.066      | -0.090** | -0.137** | -0.063    | -0.092**               | -0.115** |  |  |  |  |
|                                   | (0.046)     | (0.040)  | (0.061)  | (0.043)   | (0.039)                | (0.047)  |  |  |  |  |

## PREDICTED IMPACT OF AGING



A JOB LADDER MODEL WITH CREATIVE DESTRUCTION • JOB LADDER: Ranking of firms that workers gradually climb

• ENTREPRENEURIAL CHOICE

• **CREATIVE DESTRUCTION**: Entrants push out incumbents

• **AGENTS**: Unit mass of individuals,  $\mathbf{a} = 1, \dots, \mathbf{A}$ 

• Move to the next age at rate  $\kappa(\mathbf{a})$ 

- Oldest age group dies at rate  $\kappa(\mathbf{A})$  and is replaced by offspring
- PREFERENCES: Risk-neutral and altruistic w.r.t. offspring

$$\mathbb{E}_{t} \int_{t}^{\infty} \exp\left(-\tilde{\rho}(\tau-t)\right) \left[C\left(\tau\right) + \tilde{B}\left(\tau\right)\right] d\tau$$

where  $\tilde{B}(\tau) = B(\tau)$  if unemployed; zero o.w.

### • Multiworker firms: Idiosyncratic productivity $\tilde{z}$

$$d\tilde{z}(t) = \mu_o dt + \sigma dW(t)$$

• **PRODUCTION:** At match level,  $\mathbf{y}(\mathbf{z}, \mathbf{x}) = \mathbf{e}^{\tilde{\mathbf{z}}} \times \mathbf{x}$ 

• x = quality of match; starts at x = 1

• Jumps to  $x_b$  or  $x_g$ ,  $x_b < 1 < x_g$ , with equal prob at rate  $\psi$ 

 $\circ$  Worker flows >> job flows

#### TWO SOURCES OF GROWTH:

- 1. Growth of incumbents at exogenous rate  $\mu_o$
- 2. Selection of firms at endogenous rate  $\mu$

 $\implies$  Total growth rate  $\mu_e = \mu_o + \mu$ 

**TRANSFORMATION**:  $z = \tilde{z} - \underline{\tilde{z}}(t)$  etc.

• Incumbents fall behind at rate of obsolescence,  $\mu = \mu_e - \mu_o$ 

#### WHEN TO SWITCH EMPLOYER & BECOME ENTREPRENEUR

- $\circ~$  Job finding rate  $\lambda$  from both U & E
- $\circ\,$  Entrepreneurship opportunities at rate  $\gamma\,$ 
  - Entry cost  $c \sim \Omega(a)$  and has to quit job (if employed)
  - Draws productivity from innovation distribution  $\phi(z)$
  - $\circ~$  Sells idea to MF and returns to labor market as unemployed
- $\circ\,$  Wage setting following Cahuc et al (2006)  $\bigodot\,$

$$\rho V(z, x_u, a) = y(z, x_u) - \underbrace{\mu \times \frac{\partial V(z, x_u, a)}{\partial z}}_{\text{obsolescence}} + \frac{\sigma^2}{2} \frac{\partial^2 V(z, x_u, a)}{\partial z^2} + \underbrace{\kappa(a) \left[\tilde{V}(z, x_u, a+1) - V(z, x_u, a)\right]}_{\text{individual ages}} + \underbrace{\psi \sum_i \pi(x_i) \left[\tilde{V}(z, x_i, a) - V(z, x_u, a)\right]}_{\text{match quality is revealed}} + \underbrace{\lambda \beta \int_0^\infty \left\{ V\left(z', x_u, a\right) - V(z, x_u, a) \right\}^+ dF(z')}_{\text{new job offer}} + \underbrace{\gamma \int_{\underline{c}}^{\bar{c}} \left\{ E + U(a) - V(z, x_u, a) - c \right\}^+ d\Omega(c; a)}_{\text{Entrepreneurship opportunity}}$$

$$\rho V\left(z, x_{u}, a\right) = y(z, x_{u}) - \underbrace{\mu \times \frac{\partial V\left(z, x_{u}, a\right)}{\partial z}}_{\text{obsolescence}} + \frac{\sigma^{2}}{2} \frac{\partial^{2} V\left(z, x_{u}, a\right)}{\partial z^{2}} + \underbrace{\kappa(a) \left[\tilde{V}\left(z, x_{u}, a+1\right) - V\left(z, x_{u}, a\right)\right]}_{\text{individual ages}} + \underbrace{\psi \sum_{i} \pi(x_{i}) \left[\tilde{V}(z, x_{i}, a) - V(z, x_{u}, a)\right]}_{\text{match quality is revealed}} + \underbrace{\lambda \beta \int_{0}^{\infty} \left\{V\left(z', x_{u}, a\right) - V\left(z, x_{u}, a\right)\right\}^{+} dF(z')}_{\text{new job offer}} + \underbrace{\gamma \int_{c}^{\bar{c}} \left\{E + U(a) - V(z, x_{u}, a) - c\right\}^{+} d\Omega(c; a)}_{\text{Entrepreneurship opportunity}}$$

$$\rho V\left(z, x_{u}, a\right) = y(z, x_{u}) - \underbrace{\mu \times \frac{\partial V\left(z, x_{u}, a\right)}{\partial z}}_{\text{obsolescence}} + \frac{\sigma^{2}}{2} \frac{\partial^{2} V\left(z, x_{u}, a\right)}{\partial z^{2}} + \underbrace{\kappa(a) \left[\tilde{V}\left(z, x_{u}, a+1\right) - V\left(z, x_{u}, a\right)\right]}_{\text{individual ages}} + \underbrace{\psi \sum_{i} \pi(x_{i}) \left[\tilde{V}(z, x_{i}, a) - V(z, x_{u}, a)\right]}_{\text{match quality is revealed}} + \underbrace{\lambda \beta \int_{0}^{\infty} \left\{V\left(z', x_{u}, a\right) - V\left(z, x_{u}, a\right)\right\}^{+} dF(z')}_{\text{new job offer}} + \underbrace{\gamma \int_{c}^{\bar{c}} \left\{E + U(a) - V(z, x_{u}, a) - c\right\}^{+} d\Omega(c; a)}_{\text{Entrepreneurship opportunity}}$$

$$\begin{split} \rho V\left(z, x_{u}, a\right) &= y(z, x_{u}) - \underbrace{\mu \times \frac{\partial V\left(z, x_{u}, a\right)}{\partial z}}_{\text{obsolescence}} + \frac{\sigma^{2}}{2} \frac{\partial^{2} V\left(z, x_{u}, a\right)}{\partial z^{2}} + \\ &+ \underbrace{\kappa(a) \left[\tilde{V}\left(z, x_{u}, a+1\right) - V\left(z, x_{u}, a\right)\right]}_{\text{individual ages}} + \underbrace{\psi \sum_{i} \pi(x_{i}) \left[\tilde{V}(z, x_{i}, a) - V(z, x_{u}, a)\right]}_{\text{match quality is revealed}} + \underbrace{\lambda \beta \int_{0}^{\infty} \left\{V\left(z', x_{u}, a\right) - V\left(z, x_{u}, a\right)\right\}^{+} dF(z')}_{\text{new job offer}} + \underbrace{\gamma \int_{\underline{c}}^{\bar{c}} \left\{E + U(a) - V(z, x_{u}, a) - c\right\}^{+} d\Omega(c; a)}_{\text{Entrepreneurship opportunity}} \end{split}$$

$$\rho V\left(z, x_{u}, a\right) = y(z, x_{u}) - \underbrace{\mu \times \frac{\partial V\left(z, x_{u}, a\right)}{\partial z}}_{\text{obsolescence}} + \frac{\sigma^{2}}{2} \frac{\partial^{2} V\left(z, x_{u}, a\right)}{\partial z^{2}} + \underbrace{\kappa(a) \left[\tilde{V}\left(z, x_{u}, a + 1\right) - V\left(z, x_{u}, a\right)\right]}_{\text{individual ages}} + \underbrace{\psi \sum_{i} \pi(x_{i}) \left[\tilde{V}(z, x_{i}, a) - V(z, x_{u}, a)\right]}_{\text{match quality is revealed}} + \underbrace{\lambda \beta \int_{0}^{\infty} \left\{V\left(z', x_{u}, a\right) - V\left(z, x_{u}, a\right)\right\}^{+} dF(z')}_{\text{new job offer}} + \underbrace{\gamma \int_{c}^{\bar{c}} \left\{E + U(a) - V(z, x_{u}, a) - c\right\}^{+} d\Omega(c; a)}_{\text{Entrepreneurship opportunity}}$$

$$\begin{split} \rho V\left(z, x_{u}, a\right) &= y(z, x_{u}) - \underbrace{\mu \times \frac{\partial V\left(z, x_{u}, a\right)}{\partial z}}_{\text{obsolescence}} + \frac{\sigma^{2}}{2} \frac{\partial^{2} V\left(z, x_{u}, a\right)}{\partial z^{2}} + \\ &+ \underbrace{\kappa(a) \left[\tilde{V}\left(z, x_{u}, a+1\right) - V\left(z, x_{u}, a\right)\right]}_{\text{individual ages}} + \underbrace{\psi \sum_{i} \pi(x_{i}) \left[\tilde{V}(z, x_{i}, a) - V(z, x_{u}, a)\right]}_{\text{match quality is revealed}} + \underbrace{\lambda \beta \int_{0}^{\infty} \left\{V\left(z', x_{u}, a\right) - V\left(z, x_{u}, a\right)\right\}^{+} dF(z')}_{\text{new job offer}} + \underbrace{\gamma \int_{\underline{c}}^{\bar{c}} \left\{E + U(a) - V(z, x_{u}, a) - c\right\}^{+} d\Omega(c; a)}_{\text{Entrepreneurship opportunity}} \end{split}$$

$$\rho V\left(z, x_{u}, a\right) = y(z, x_{u}) - \underbrace{\mu \times \frac{\partial V\left(z, x_{u}, a\right)}{\partial z}}_{\text{obsolescence}} + \frac{\sigma^{2}}{2} \frac{\partial^{2} V\left(z, x_{u}, a\right)}{\partial z^{2}} + \underbrace{\kappa(a) \left[\tilde{V}\left(z, x_{u}, a+1\right) - V\left(z, x_{u}, a\right)\right]}_{\text{individual ages}} + \underbrace{\psi \sum_{i} \pi(x_{i}) \left[\tilde{V}(z, x_{i}, a) - V(z, x_{u}, a)\right]}_{\text{match quality is revealed}} + \underbrace{\lambda \beta \int_{0}^{\infty} \left\{V\left(z', x_{u}, a\right) - V\left(z, x_{u}, a\right)\right\}^{+} dF(z')}_{\text{new job offer}} + \underbrace{\gamma \int_{c}^{\bar{c}} \left\{E + U(a) - V(z, x_{u}, a) - c\right\}^{+} d\Omega(c; a)}_{\text{Entrepreneurship opportunity}}$$

$$\begin{split} \rho V\left(z, x_{u}, a\right) &= y(z, x_{u}) - \underbrace{\mu \times \frac{\partial V\left(z, x_{u}, a\right)}{\partial z}}_{\text{obsolescence}} + \frac{\sigma^{2}}{2} \frac{\partial^{2} V\left(z, x_{u}, a\right)}{\partial z^{2}} + \\ &+ \underbrace{\kappa(a) \left[\tilde{V}\left(z, x_{u}, a+1\right) - V\left(z, x_{u}, a\right)\right]}_{\text{individual ages}} + \underbrace{\psi \sum_{i} \pi(x_{i}) \left[\tilde{V}(z, x_{i}, a) - V(z, x_{u}, a)\right]}_{\text{match quality is revealed}} + \underbrace{\lambda \beta \int_{0}^{\infty} \left\{V\left(z', x_{u}, a\right) - V\left(z, x_{u}, a\right)\right\}^{+} dF(z')}_{\text{new job offer}} + \underbrace{\gamma \int_{\underline{c}}^{\overline{c}} \left\{E + U(a) - V(z, x_{u}, a) - c\right\}^{+} d\Omega(c; a)}_{\text{Entrepreneurship opportunity}} \end{split}$$

$$\begin{split} \rho V\left(z,x_{u},a\right) &= y(z,x_{u}) - \underbrace{\mu \times \frac{\partial V\left(z,x_{u},a\right)}{\partial z}}_{\text{obsolescence}} + \frac{\sigma^{2}}{2} \frac{\partial^{2} V\left(z,x_{u},a\right)}{\partial z^{2}} + \\ &+ \underbrace{\kappa(a) \left[\tilde{V}\left(z,x_{u},a+1\right) - V\left(z,x_{u},a\right)\right]}_{\text{individual ages}} + \underbrace{\psi \sum_{i} \pi(x_{i}) \left[\tilde{V}(z,x_{i},a) - V(z,x_{u},a)\right]}_{\text{match quality is revealed}} + \underbrace{\lambda \beta \int_{0}^{\infty} \left\{V\left(z',x_{u},a\right) - V\left(z,x_{u},a\right)\right\}^{+} dF(z')}_{\text{new job offer}} + \underbrace{\gamma \int_{\underline{c}}^{\bar{c}} \left\{E + U(a) - V(z,x_{u},a) - c\right\}^{+} d\Omega(c;a)}_{\text{Entrepreneurship opportunity}} \end{split}$$

• **JJ** Mobility:  $V(\underline{z}(z, x, a), x_u, a) = V(z, x, a)$
#### VALUE OF MATCH & DECISION RULES

$$\begin{split} \rho V\left(z,x_{u},a\right) &= y(z,x_{u}) - \underbrace{\mu \times \frac{\partial V\left(z,x_{u},a\right)}{\partial z}}_{\text{obsolescence}} + \frac{\sigma^{2}}{2} \frac{\partial^{2} V\left(z,x_{u},a\right)}{\partial z^{2}} + \\ &+ \underbrace{\kappa(a) \left[\tilde{V}\left(z,x_{u},a+1\right) - V\left(z,x_{u},a\right)\right]}_{\text{individual ages}} + \underbrace{\psi \sum_{i} \pi(x_{i}) \left[\tilde{V}(z,x_{i},a) - V(z,x_{u},a)\right]}_{\text{match quality is revealed}} + \underbrace{\lambda \beta \int_{0}^{\infty} \left\{V\left(z',x_{u},a\right) - V\left(z,x_{u},a\right)\right\}^{+} dF(z')}_{\text{new job offer}} + \underbrace{\gamma \int_{\underline{c}}^{\overline{c}} \left\{E + U(a) - V(z,x_{u},a) - c\right\}^{+} d\Omega(c;a)}_{\text{Entrepreneurship opportunity}} \end{split}$$

- **JJ** Mobility:  $V(\underline{z}(z, x, a), x_u, a) = V(z, x, a)$
- Entrep. Entry:  $\overline{c}(z, x, a) + V(z, x, a) = E + U(a)$

17

#### FIRM'S PROBLEM

Post vacancies v subject to cost C(v) = r + c(v)

 $\circ c(v)$  is strictly convex flow cost per vacancy

 $\circ r$  is fixed cost associated with employing a unit of capital

 $\implies$  Stop paying => exit

$$\rho J(z) = \max_{v \ge 0} \left\{ v(1-\beta)q \left[ \sum_{a} \left( \underbrace{u(a) \left\{ V(z, x_u, a) - U(a) \right\}^+}_{\text{value from meeting unemployed individual}} \right) + \underbrace{(1-u) \int \left\{ V(z, x_u, a) - V(z', x, a) \right\}^+ dG(z', x, a)}_{\text{value from meeting employed individual}} \right] - c(v) \right\} - \underbrace{r}_{\text{fixed cost}} - \underbrace{\mu J'(z)}_{\text{drift in } z} + \underbrace{\frac{\sigma^2}{2} J''(z)}_{\text{shocks to } z}$$

• **VACANCY POLICY**: v(p) defined by FOC

#### HOUSEHOLDS OWN FIRMS THROUGH MUTUAL FUND

- Avoids age of founder as state (Romer, 1990)
- $\circ\,$  Rents out K capital to firms in competitive market
  - $\implies$  Factor in fixed supply => Creative destruction

**LABOR MARKET**: Cobb-Douglas matching function,  $m = \chi V^{\alpha}$ 

#### CHARACTERIZING BEHAVIOR & THE EQUILIBRIUM

#### PROP. 1 (MISMATCH AND WORKER DYNAMISM)

- (a) Better matched individuals are less likely to move
- (b) A better matched labor market discourages vacancy creation

# PROP. 2 (MISMATCH AND ENTREPRENEURSHIP) (a) Better matched individuals are less entrepreneurial (b) A better matched labor market discourages entrepreneurship

#### PROP. 3 (AMPLIFICATION)

Rate of obsolescence increases in the aggregate entry rate,  $\mu = \frac{e}{\zeta}$ 

Less entry => Lower rate of obsol. => Less mismatch => Less entry

#### AMPLIFICATION

#### AGING











## STRUCTURAL ESTIMATE OF THE IMPACT OF AGING

#### AGING EXPERIMENT WITHIN THE MODEL

• **TARGET**: salient features of aggregate firm & worker dynamism in BDS + SIPP in 2012–2014 **Details Values** 

#### • VALIDATION

- 1. Life-cycle firm dynamics 🕑
- 2. Life-cycle worker dynamics •
- 3. Link between worker and firm dynamics  $\bigcirc$

#### $\circ\,$ Change age composition to 1986

- Reduce rate at which old individuals exit
- Evaluate impact on dynamism holding everything else constant

TABLE I: FIRM DYNAMISM

|                            | (1)    | (2)    | (3)   |
|----------------------------|--------|--------|-------|
|                            | Data   | Model  | Share |
| FIRM TURNOVER              | -0.026 | -0.015 | 56    |
| Job reallocation           | -0.100 | -0.039 | 39    |
| Entry rate                 | -0.018 | -0.012 | 65    |
| Exit rate                  | -0.009 | -0.003 | 36    |
| Incumbent job reallocation | -0.046 | -0.024 | 53    |

TABLE I: FIRM DYNAMISM

|                            | (1)    | (2)    | (3)   |
|----------------------------|--------|--------|-------|
|                            | Data   | Model  | Share |
| FIRM TURNOVER              | -0.026 | -0.015 | 56    |
| JOB REALLOCATION           | -0.100 | -0.039 | 39    |
| Entry rate                 | -0.018 | -0.012 | 65    |
| Exit rate                  | -0.009 | -0.003 | 36    |
| INCUMBENT JOB REALLOCATION | -0.046 | -0.024 | 53    |

TABLE I: FIRM DYNAMISM

|                            | (1)    | (2)    | (3)   |
|----------------------------|--------|--------|-------|
|                            | Data   | Model  | Share |
| FIRM TURNOVER              | -0.026 | -0.015 | 56    |
| Job reallocation           | -0.100 | -0.039 | 39    |
| Entry rate                 | -0.018 | -0.012 | 65    |
| Exit rate                  | -0.009 | -0.003 | 36    |
| Incumbent job reallocation | -0.046 | -0.024 | 53    |

#### TABLE II: WORKER DYNAMISM

|           | (1)    | (2)    | (3)   |
|-----------|--------|--------|-------|
|           | Data   | Model  | Share |
| EU HAZARD | -0.003 | -0.001 | 36    |
| JJ HAZARD | -0.005 | -0.002 | 48    |
| UE hazard | -0.004 | -0.001 | 25    |

TABLE I: FIRM DYNAMISM

|                            | (1)    | (2)    | (3)   |
|----------------------------|--------|--------|-------|
|                            | Data   | Model  | Share |
| FIRM TURNOVER              | -0.026 | -0.015 | 56    |
| Job reallocation           | -0.100 | -0.039 | 39    |
| Entry rate                 | -0.018 | -0.012 | 65    |
| Exit rate                  | -0.009 | -0.003 | 36    |
| Incumbent job reallocation | -0.046 | -0.024 | 53    |

#### TABLE II: WORKER DYNAMISM

|           | (1)    | (2)    | (3)   |
|-----------|--------|--------|-------|
|           | Data   | Model  | Share |
| EU hazard | -0.003 | -0.001 | 36    |
| JJ HAZARD | -0.005 | -0.002 | 48    |
| UE HAZARD | -4%    | -1%    | 25    |

TABLE I: FIRM DYNAMISM

|                            | (1)    | (2)    | (3)   |
|----------------------------|--------|--------|-------|
|                            | Data   | Model  | Share |
| FIRM TURNOVER              | -0.026 | -0.015 | 56    |
| Job reallocation           | -0.100 | -0.039 | 39    |
| Entry rate                 | -0.018 | -0.012 | 65    |
| Exit rate                  | -0.009 | -0.003 | 36    |
| Incumbent job reallocation | -0.046 | -0.024 | 53    |

#### TABLE II: WORKER DYNAMISM

|           | (1)    | (2)    | (3)       |
|-----------|--------|--------|-----------|
|           | Data   | Model  | Share     |
| EU hazard | -0.003 | -0.001 | 36        |
| JJ HAZARD | -22%   | -11%   | 48        |
| UE HAZARD | -4%    | -1%    | <b>25</b> |

23

#### Aging has had negative growth effect

TABLE III: IMPACT OF AGING ON GROWTH & UNEMPLOYMENT

|                   | (1)   | (2)   |
|-------------------|-------|-------|
|                   | Data  | Model |
| Growth            | -0.9  | -0.3  |
| UNEMPLOYMENT RATE | -0.01 | -0.01 |

#### Aging has had negative growth effect but positive level effect

TABLE III: IMPACT OF AGING ON GROWTH & UNEMPLOYMENT

| (1)   | (2)                          |
|-------|------------------------------|
| Data  | Model                        |
| -0.9  | -0.3                         |
| -0.01 | -0.01                        |
|       | (1)<br>Data<br>-0.9<br>-0.01 |

TABLE IV: LOG CHANGE IN LEVEL OF OUTPUT, MODEL

| (1)    | (2)        |
|--------|------------|
| Net    | Discounted |
| OUTPUT | NET OUTPUT |
| 0.06   | -0.04      |

#### Aging has had negative growth effect but positive level effect

TABLE III: IMPACT OF AGING ON GROWTH & UNEMPLOYMENT

| (1)   | (2)                          |
|-------|------------------------------|
| Data  | Model                        |
| -0.9  | -0.3                         |
| -0.01 | -0.01                        |
|       | (1)<br>Data<br>-0.9<br>-0.01 |

TABLE IV: LOG CHANGE IN LEVEL OF OUTPUT, MODEL

| (1)    | (2)        |
|--------|------------|
| Net    | Discounted |
| OUTPUT | NET OUTPUT |
| 0.06   | -0.04      |

#### DIRECT & INDIRECT EFFECTS

FIGURE IV: EMPLOYMENT DISTRIBUTION OVER FIRM PRODUCTIVITY



#### DIRECT & INDIRECT EFFECTS

FIGURE IV: EMPLOYMENT DISTRIBUTION OVER FIRM PRODUCTIVITY



$$\mathbf{Hazard} = \sum_{a} \mathbf{share}_{a} \underbrace{\int_{\mathbf{y}} Decision_{a}(\mathbf{y}) \times dEmployment_{a}(\mathbf{y})}_{\mathbf{y}}$$

Age conditional rate



$$\mathbf{Hazard} = \sum_{a} \mathbf{share}_{a} \underbrace{\int_{\mathbf{y}} Decision_{a}(\mathbf{y}) \times dEmployment_{a}(\mathbf{y})}_{\mathbf{Age \ conditional \ rate}}$$

TABLE V: DECOMPOSING THE CHANGE IN THE JJ & ENTRY HAZARD

|               | (1)          | (2)       |
|---------------|--------------|-----------|
|               | Entry hazard | JJ hazard |
| Direct effect | 10.5         | 7.0       |

$$\mathbf{Hazard} = \sum_{a} \mathbf{share}_{a} \underbrace{\int_{\mathbf{y}} Decision_{a}(\mathbf{y}) \times dEmployment_{a}(\mathbf{y})}_{\mathbf{Age conditional rate}}$$

Table V: Decomposing the change in the JJ & entry hazard

|                     | (1)          | (2)       |
|---------------------|--------------|-----------|
|                     | Entry hazard | JJ hazard |
| Direct effect       | 10.5         | 7.0       |
| EQUILIBRIUM EFFECTS | 11.7         | 6.1       |
| DECISION RULE       | 1.2          | -17.3     |
| Age cond. mismatch  | 10.4         | 23.3      |
|                     |              |           |

$$\mathbf{Hazard} = \sum_{a} \mathbf{share}_{a} \underbrace{\int_{\mathbf{y}} Decision_{a}(\mathbf{y}) \times dEmployment_{a}(\mathbf{y})}_{\mathbf{Age \ conditional \ rate}}$$

Table V: Decomposing the change in the JJ & entry hazard

|                     | (1)          | (2)       |
|---------------------|--------------|-----------|
|                     | Entry hazard | JJ hazard |
| DIRECT EFFECT       | 10.5         | 7.0       |
| Equilibrium effects | 11.7         | 6.1       |
| DECISION RULE       | 1.2          | -17.3     |
| Age cond. mismatch  | 10.4         | 23.3      |
| Total effect        | 22.2         | 13.1      |

#### How much does entry fall with mismatch?

FIGURE V: DISTRIBUTION OF OLD INDIVIDUALS & ENTRY POLICY



1. Age-segregated labor markets  $\bigcirc$ 

2. No aging of potential entrepreneurs  $\bullet$ 

3. Approximate transition dynamics  $\bullet$ 

4. Income dynamics  $\bigcirc$ 

#### AGING EXPLAINS

- 1. **40–50% of declines** in entry, exit, incumbent job reallocation, EU and JJ mobility; modest fall in UE
- 2.  $-\frac{1}{4}$  percentage points decline in growth
- 3. Half due to equilibrium effects

**POLICY:** Regulation/taxation or immigration?

#### 1. Aging typically accounts for at most half of declines

- Labor supply (Karahan et al, 2016)
- Licensing (Kleiner and Krueger, 2013)
- Training requirements (Cairo, 2013)
- EPL (Autor et al., 2007)

### 2. Anecdotal evidence that aging has reduced dynamism & growth in other countries

 $\circ~$  A rigorous cross-country analysis is missing

#### THANK YOU

APPENDIX A

#### A LONGER PERSPECTIVE



Figure VI: Share 40 and older and EU hazard

#### AGE COMPOSITION



#### DATA

- Business Dynamic Statistics (BDS) 1978–2015
- Annual data on firms and establishments covering private sector

#### DEFINITIONS

- Job creation:  $JC_t = \sum_i (size_{it} size_{it-1})^+$
- Job destruction:  $JD_t = \sum_i (-(size_{it} size_{it-1}))^+$

$$\underbrace{JC_t + JD_t}_{t} \quad = \quad \underbrace{JC_t^{inc} + JD_t^{inc}}_{t} \quad + \quad \underbrace{JC_t^{entry} + JD_t^{exit}}_{t}$$

Job reallocation<sub>t</sub> = Inc job reallocation<sub>t</sub> + Estabs. turnover<sub>t</sub>




FIGURE VIII: ESTABLISHMENT REALLOCATION RATES

## ENTRY AND EXIT



Appendix Motivation

## DYNAMICS BY FIRM AGE



Appendix Karahan et al Motivation

#### DYNAMICS BY INDUSTRY

(B) JOB REALLOCATION (A) TURNOVER 2 φ.-...... rd raję g N -1978 1983 1998 2003 2008 2013 1978 1983 1993 1998 2008 2013 1988 1993 1988 2003 Construction ---- Manufacturing ---- Transportation/utilities Construction ---- Manufacturing --- Transportation/utilities ····· Trade - - Finance ----- Serices ----- Trade - - Finance ----- Serices  $(\mathbf{C})$ Turnover JOB REALLOCATION (D 4 rate F 83 -8-06 1978 1978 1983 1988 1993 1998 2003 2008 2013 1983 1988 1993 1998 2003 2008 2013 ---- Within sector Raw ---- Within sector

Appendix Motivation

#### DATA

- SIPP (1984–2013)
- CPS (1978–2015)
- BLS (1948-2015)

#### DEFINITIONS

- $EU_{it}$  = employed in month t, unemployed in t + 1
- $\circ UE_{it} =$  unemployed in t, employed in t + 1
- $\circ JJ_{it} =$ employed in t, different main employer in t + 1



## WORKER DYNAMICS

- $\circ~$  Large fall in EU & JJ hazard
- $\circ~$  Little evidence of secular decline in UE hazard



LN and NL Motivation

 $\circ~$  Declines in the hazard of moving in and out of the labor force



## GROWTH

 $\circ~$  Annual growth in real GDP per worker slowed from 2.6% in 1984–1988 to 1.7% in 2012–2016

FIGURE XIV: ANNUAL HP-FILTERED GROWTH RATE





## KARAHAN, PUGSLEY AND SAHIN (2016)

- Labor supply growth explains  $\frac{1}{4}$  of fall in start-up rate
- $\circ\,$  No change in incumbent life-cycle dynamics  $\,$   $\bigodot\,$

#### TWO KEY DIFFERENCES

- 1. "Quality"/composition of labor force rather than quantity
- 2. Partly different set of outcomes: Worker dynamics, incumbent dynamics and growth

• Denote by  $rate_a^{late}$  age-conditional mobility rates in 2012–2014

• Denote by  $share_a^p$  the share of the labor force in age a in period p

• Direct effect = change due to shift in age composition under fixed age-conditional mobility rates

$$rate^{\text{direct}} = \sum_{a} rate_{a}^{late} \left[ share_{a}^{early} - share_{a}^{late} \right]$$



|                                    | (1)   | (2)    | (3)   | (4)    | (5)      | (6)    | (7)   |
|------------------------------------|-------|--------|-------|--------|----------|--------|-------|
|                                    | Early |        | Late  |        | % change |        |       |
|                                    | Raw   | Direct | Raw   | Direct | Raw      | Direct | Share |
| PANEL A: JJ MOBILITY               | Y     |        |       |        |          |        |       |
| SIPP                               | 0.024 | 0.019  | 0.017 | 0.017  | 45.4     | 12.3   | 27.1  |
| Panel B: EU mobility               |       |        |       |        |          |        |       |
| SIPP                               | 0.009 | 0.006  | 0.005 | 0.005  | 61.3     | 14.0   | 22.9  |
| CPS                                | 0.017 | 0.015  | 0.012 | 0.014  | 42.0     | 10.7   | 25.6  |
| Panel C: UE mobility               |       |        |       |        |          |        |       |
| SIPP                               | 0.175 | 0.101  | 0.090 | 0.093  | 94.5     | 8.6    | 9.1   |
| CPS                                | 0.251 | 0.199  | 0.221 | 0.196  | 13.7     | 1.9    | 13.9  |
| Panel D: Entry to entrepreneurship |       |        |       |        |          |        |       |
| Baseline                           | 156.5 | 109.9  | 100   | 100    | 56.5     | 9.9    | 17.5  |
| Opportunistic                      | 156.5 | 110.0  | 100   | 100    | 56.5     | 10.0   | 17.7  |
| Expect to grow                     | 156.5 | 110.8  | 100   | 100    | 56.5     | 10.8   | 19.2  |

APPENDIX B

- Partner at Solomon Brothers, laid off in 1981 (at age 39)
- Started financial service company Bloomberg LP
- Current net worth: \$47.8bn
- Would he have started Bloomberg if he had not been laid off?
  - Walt Disney, JK Rowling, Thomas Edison, Mark Cuban, Oprah
    Winfrey, Sallie Krawcheck, Bernie Marcus and Arthur Blank...



#### ENTREPRENEURSHIP ENTRY BY AGE





#### POST ENTRY PERFORMANCE BY AGE OF FOUNDER



• Individuals may be either employed or unemployed



- Individuals may be either employed or unemployed
- Search with the same efficiency (normalized to one)



- $\circ~$  Individuals may be either employed or unemployed
- Search with the same efficiency (normalized to one)
- $\circ~$  If firms post  $\bar{v}$  vacancies, total number of matches equals  $\chi \bar{v}^{\alpha}$



- Individuals may be either employed or unemployed
- Search with the same efficiency (normalized to one)
- $\circ~$  If firms post  $\bar{v}$  vacancies, total number of matches equals  $\chi \bar{v}^{\alpha}$
- Denote by  $\lambda$  rate at which individuals meet with open vacancies, q rate at which vacancy contacts individuals

$$\lambda = \chi \bar{v}^{\alpha}, \qquad q = \chi \bar{v}^{\alpha - 1}$$

APPENDIX C

### OFFER MATCHING FRAMEWORK OF CAHUC ET AL (2006)

• **UNEMPLOYED:** Outside value plus  $\beta$  of surplus



#### OFFER MATCHING FRAMEWORK OF CAHUC ET AL (2006)

- $\circ~$  Unemployed: Outside value plus  $\beta$  of surplus
- EMPLOYED (I): Poacher with lower valuation
  - $\circ~$  Remain with current employer, (potentially) get updated value equal to poacher plus  $\beta$  of differential



### OFFER MATCHING FRAMEWORK OF CAHUC ET AL (2006)

- $\circ~$  Unemployed: Outside value plus  $\beta$  of surplus
- EMPLOYED (I): Poacher with lower valuation
  - $\circ~$  Remain with current employer, (potentially) get updated value equal to poacher plus  $\beta$  of differential
- EMPLOYED (II): Poacher with higher valuation
  - $\circ~$  Switch to poacher, get current match plus  $\beta$  of differential



### Offer matching framework of Cahuc et al (2006)

- $\circ\,$  Unemployed: Outside value plus  $\beta$  of surplus
- EMPLOYED (I): Poacher with lower valuation
  - $\circ~$  Remain with current employer, (potentially) get updated value equal to poacher plus  $\beta$  of differential
- EMPLOYED (II): Poacher with higher valuation
  - $\circ~$  Switch to poacher, get current match plus  $\beta$  of differential
- $\implies$  Renegotiation when one party has credible threat



• On the BGP,  $\underline{Z}(t)$  and  $\tilde{r}(t)$  grow at endogenous rate  $\mu$ , while incumbent firm productivity in expectation does not change

- On the BGP,  $\underline{Z}(t)$  and  $\tilde{r}(t)$  grow at endogenous rate  $\mu$ , while incumbent firm productivity in expectation does not change
- $\circ~$  Study transformed economy in which  $\underline{Z}(t)$  and  $\tilde{r}(t)$  do not grow

- On the BGP,  $\underline{Z}(t)$  and  $\tilde{r}(t)$  grow at endogenous rate  $\mu$ , while incumbent firm productivity in expectation does not change
- Study transformed economy in which  $\underline{Z}(t)$  and  $\tilde{r}(t)$  do not grow
- Normalize by  $\underline{Z}(t)$  and denote by



- On the BGP,  $\underline{Z}(t)$  and  $\tilde{r}(t)$  grow at endogenous rate  $\mu$ , while incumbent firm productivity in expectation does not change
- Study transformed economy in which  $\underline{Z}(t)$  and  $\tilde{r}(t)$  do not grow
- Normalize by  $\underline{Z}(t)$  and denote by

1.  $z = \log(Z(t)/\underline{Z}(t))$  normalized log firm productivity



- On the BGP,  $\underline{Z}(t)$  and  $\tilde{r}(t)$  grow at endogenous rate  $\mu$ , while incumbent firm productivity in expectation does not change
- Study transformed economy in which  $\underline{Z}(t)$  and  $\tilde{r}(t)$  do not grow
- Normalize by  $\underline{Z}(t)$  and denote by
  - 1.  $z = \log(Z(t)/\underline{Z}(t))$  normalized log firm productivity
  - 2. r the normalized price of a marketing specialist

- On the BGP,  $\underline{Z}(t)$  and  $\tilde{r}(t)$  grow at endogenous rate  $\mu$ , while incumbent firm productivity in expectation does not change
- Study transformed economy in which  $\underline{Z}(t)$  and  $\tilde{r}(t)$  do not grow
- Normalize by  $\underline{Z}(t)$  and denote by
  - 1.  $z = \log(Z(t)/\underline{Z}(t))$  normalized log firm productivity
  - 2. r the normalized price of a marketing specialist
  - 3.  $\phi(z)$  the normalized innovation distribution



- On the BGP,  $\underline{Z}(t)$  and  $\tilde{r}(t)$  grow at endogenous rate  $\mu$ , while incumbent firm productivity in expectation does not change
- Study transformed economy in which  $\underline{Z}(t)$  and  $\tilde{r}(t)$  do not grow
- Normalize by  $\underline{Z}(t)$  and denote by
  - 1.  $z = \log(Z(t)/\underline{Z}(t))$  normalized log firm productivity
  - 2. r the normalized price of a marketing specialist
  - 3.  $\phi(z)$  the normalized innovation distribution
  - 4.  $\rho = \tilde{\rho} \mu$  the effective discount rate

- On the BGP,  $\underline{Z}(t)$  and  $\tilde{r}(t)$  grow at endogenous rate  $\mu$ , while incumbent firm productivity in expectation does not change
- Study transformed economy in which  $\underline{Z}(t)$  and  $\tilde{r}(t)$  do not grow
- Normalize by  $\underline{Z}(t)$  and denote by
  - 1.  $z = \log(Z(t)/\underline{Z}(t))$  normalized log firm productivity
  - 2. r the normalized price of a marketing specialist
  - 3.  $\phi(z)$  the normalized innovation distribution
  - 4.  $\rho = \tilde{\rho} \mu$  the effective discount rate
- $\implies$  Incumbent firm productivity drifts at  $-\mu$  while r is constant



# VALUE OF UNEMPLOYMENT

$$\rho U(a) = b + \underbrace{\kappa(a) \left[ U(a+1) - U(a) \right]}_{\text{Aging}} +$$



## VALUE OF UNEMPLOYMENT



• An individual meets firm with productivity z at rate  $\lambda f(z)$ 



$$\rho U(a) = b + \underbrace{\kappa(a) \left[ U(a+1) - U(a) \right]}_{\text{Aging}} + \underbrace{\lambda \beta \int\limits_{0}^{\infty} \left\{ V(z, \textbf{\textit{x}}_{\textbf{\textit{u}}}, a) - U(a) \right\}^{+} dF(z)}_{\text{Job offer}}$$

- $\circ~$  An individual meets firm with productivity z at rate  $\lambda f(z)$ 
  - Initial match productivity is unknown,  $x = x_u$





- An individual meets firm with productivity z at rate  $\lambda f(z)$ 
  - Initial match productivity is unknown,  $x = x_u$
  - Gets  $\beta$  of difference between value of match,  $V(z, x_u, a)$ , and U(a)




- An individual meets firm with productivity z at rate  $\lambda f(z)$ 
  - Initial match productivity is unknown,  $x = x_u$
  - Gets  $\beta$  of difference between value of match,  $V(z, x_u, a)$ , and U(a)
- Opportunity to start business at rate  $\gamma(a)$





- An individual meets firm with productivity z at rate  $\lambda f(z)$ 
  - Initial match productivity is unknown,  $x = x_u$
  - Gets  $\beta$  of difference between value of match,  $V(z, x_u, a)$ , and U(a)
- Opportunity to start business at rate  $\gamma(a)$ 
  - Associated entry cost c drawn from  $\Omega$
  - $\circ~E$  denotes expected value of entrepreneurship



- An individual meets firm with productivity z at rate  $\lambda f(z)$ 
  - Initial match productivity is unknown,  $x = x_u$
  - Gets  $\beta$  of difference between value of match,  $V(z, x_u, a)$ , and U(a)
- Opportunity to start business at rate  $\gamma(a)$ 
  - $\circ~$  Associated entry cost  ${\color{black}c}$  drawn from  $\Omega$
  - $\circ~E$  denotes expected value of entrepreneurship
- Decision rules:  $\underline{\mathbf{z}}_{\mathbf{u}}(\mathbf{x}_{\mathbf{u}}, \mathbf{a})$



- An individual meets firm with productivity z at rate  $\lambda f(z)$ 
  - Initial match productivity is unknown,  $x = x_u$
  - Gets  $\beta$  of difference between value of match,  $V(z, x_u, a)$ , and U(a)
- Opportunity to start business at rate  $\gamma(a)$ 
  - $\circ~$  Associated entry cost c drawn from  $\Omega$
  - $\circ~E$  denotes expected value of entrepreneurship
- Decision rules:  $\underline{\mathbf{z}}_{\mathbf{u}}(\mathbf{x}_{\mathbf{u}}, \mathbf{a})$  and  $\overline{\mathbf{c}}_{\mathbf{u}}$

### VALUE OF MATCH WITH KNOWN QUALITY

$$\begin{split} \rho V\left(z,x,a\right) = & e^{z} - \underbrace{\mu \frac{\partial V\left(z,x,a\right)}{\partial z}}_{\text{drift in } z} + \underbrace{\frac{\sigma^{2}}{2} \frac{\partial^{2} V\left(z,x,a\right)}{\partial z^{2}}}_{\text{shocks to } z} + \\ & + \underbrace{\kappa(a) \left[\max\left\{V\left(z,x,a+1\right), U(a+1)\right\} - V\left(z,x,a\right)\right]}_{\text{individual ages}} \end{split}$$

$$+ \underbrace{\lambda \beta \int_{0}^{\infty} \max \left\{ V\left(z', x_{u}, a\right) - V\left(z, x, a\right), 0 \right\} dF(z')}_{\bullet} + \underbrace{\lambda \beta \int_{0}^{\infty} \max \left\{ V\left(z', x_{u}, a\right) - V\left(z, x, a\right), 0 \right\} dF(z') + \underbrace{\lambda \beta \int_{0}^{\infty} \max \left\{ V\left(z', x_{u}, a\right) - V\left(z, x, a\right), 0 \right\} dF(z') + \underbrace{\lambda \beta \int_{0}^{\infty} \max \left\{ V\left(z', x_{u}, a\right) - V\left(z, x, a\right), 0 \right\} dF(z') + \underbrace{\lambda \beta \int_{0}^{\infty} \max \left\{ V\left(z', x_{u}, a\right) - V\left(z, x, a\right), 0 \right\} dF(z') + \underbrace{\lambda \beta \int_{0}^{\infty} \max \left\{ V\left(z', x_{u}, a\right) - V\left(z, x, a\right), 0 \right\} dF(z') + \underbrace{\lambda \beta \int_{0}^{\infty} \max \left\{ V\left(z', x_{u}, a\right) - V\left(z, x, a\right), 0 \right\} dF(z') + \underbrace{\lambda \beta \int_{0}^{\infty} \max \left\{ V\left(z', x_{u}, a\right) - V\left(z, x, a\right), 0 \right\} dF(z') + \underbrace{\lambda \beta \int_{0}^{\infty} \max \left\{ V\left(z', x_{u}, a\right) - V\left(z, x, a\right), 0 \right\} dF(z') + \underbrace{\lambda \beta \int_{0}^{\infty} \max \left\{ V\left(z', x_{u}, a\right) - V\left(z, x, a\right), 0 \right\} dF(z') + \underbrace{\lambda \beta \int_{0}^{\infty} \max \left\{ V\left(z', x_{u}, a\right) - V\left(z, x, a\right), 0 \right\} dF(z') + \underbrace{\lambda \beta \int_{0}^{\infty} \max \left\{ V\left(z', x_{u}, a\right) - V\left(z, x, a\right), 0 \right\} dF(z') + \underbrace{\lambda \beta \int_{0}^{\infty} \max \left\{ V\left(z', x_{u}, a\right) - V\left(z, x, a\right), 0 \right\} dF(z') + \underbrace{\lambda \beta \int_{0}^{\infty} \max \left\{ V\left(z', x_{u}, a\right) - V\left(z, x, a\right), 0 \right\} dF(z') + \underbrace{\lambda \beta \int_{0}^{\infty} \max \left\{ V\left(z', x_{u}, a\right) - V\left(z, x, a\right), 0 \right\} dF(z') + \underbrace{\lambda \beta \int_{0}^{\infty} \max \left\{ V\left(z', x_{u}, a\right) - V\left(z, x, a\right), 0 \right\} dF(z') + \underbrace{\lambda \beta \int_{0}^{\infty} \max \left\{ V\left(z', x_{u}, a\right) - V\left(z, x, a\right), 0 \right\} dF(z') + \underbrace{\lambda \beta \int_{0}^{\infty} \max \left\{ V\left(z', x_{u}, a\right) - V\left(z, x, a\right), 0 \right\} dF(z') + \underbrace{\lambda \beta \int_{0}^{\infty} \max \left\{ V\left(z', x_{u}, a\right) - V\left(z, x, a\right), 0 \right\} dF(z') + \underbrace{\lambda \beta \int_{0}^{\infty} \max \left\{ V\left(z', x_{u}, a\right) - V\left(z, x, a\right), 0 \right\} dF(z') + \underbrace{\lambda \beta \int_{0}^{\infty} \max \left\{ V\left(z', x_{u}, a\right) - V\left(z, x, a\right), 0 \right\} dF(z') + \underbrace{\lambda \beta \int_{0}^{\infty} \max \left\{ V\left(z', x_{u}, a\right) - V\left(z', x', a\right), 0 \right\} dF(z') + \underbrace{\lambda \beta \int_{0}^{\infty} \max \left\{ V\left(z', x_{u}, a\right) - V\left(z', x', a\right), 0 \right\} dF(z') + \underbrace{\lambda \beta \int_{0}^{\infty} \max \left\{ V\left(z', x_{u}, a\right) - V\left(z', x', a\right), 0 \right\} dF(z') + \underbrace{\lambda \beta \int_{0}^{\infty} \max \left\{ V\left(z', x', a\right) - V\left(z', x', a\right), 0 \right\} dF(z') + \underbrace{\lambda \beta \int_{0}^{\infty} \max \left\{ V\left(z', x', a\right) + V\left(z', x', a\right), 0 \right\} dF(z') + \underbrace{\lambda \beta \int_{0}^{\infty} \max \left\{ V\left(z', x', a\right) + V\left(z', x', a\right), 0 \right\} dF(z') + \underbrace{\lambda \beta \int_{0}^{\infty} \max \left\{ V\left(z', x', a\right) + V\left(z', x', a\right), 0 \right\} dF(z') + \underbrace{\lambda \beta \int_{0}^{\infty} \max \left\{ V\left(z', x', a\right) + V\left(z', x', a\right), 0 \right\} dF(z') + V\left(z', x', a\right) dF(z') + \underbrace{\lambda \beta \int_{0}$$

new job offer

$$+ \gamma(a) \int_{\bar{c}}^{\bar{c}} \max \left\{ E - c - V\left(z, x, a\right) + U(a), 0 \right\} d\Omega(c)$$

entrepreneurship opportunity

 $\circ~$  An individual who enters entrepreneurship draws an initial productivity z from  $\Phi$ 

- $\circ~$  An individual who enters entrepreneurship draws an initial productivity z from  $\Phi$
- $\circ~$  She gives the mutual fund a take-it-or-leave-it offer to purchase the business idea

- $\circ~$  An individual who enters entrepreneurship draws an initial productivity z from  $\Phi$
- She gives the mutual fund a take-it-or-leave-it offer to purchase the business idea
- $\circ~$  Hence the expected value of entry equals

$$E = \int_{0}^{\infty} J(z) d\Phi(z)$$

• Denote by J(z) the value of hiring to a firm

$$\rho J(z) = \max_{v \ge 0} \left\{ v(1-\beta)q \left[ \sum_{a} \left( \underbrace{u(a) \left\{ V(z, x_u, a) - U(a) \right\}^+}_{\text{value from meeting unemployed individual}} \right) + \underbrace{(1-u) \int \left\{ V(z, x_u, a) - V(z', x, a) \right\}^+ dG(z', x, a)}_{\text{value from meeting employed individual}} \right] - c(v) \right\} - \underbrace{r}_{\text{fixed cost}} - \underbrace{\mu J'(z)}_{\text{drift in } z} + \underbrace{\frac{\sigma^2}{2} J''(z)}_{\text{shocks to } z} \right\}$$

• Denote by J(z) the value of hiring to a firm

$$\rho J(z) = \max_{v \ge 0} \left\{ v(1-\beta)q \left[ \sum_{a} \left( \underbrace{u(a) \left\{ V(z, x_u, a) - U(a) \right\}^+}_{\text{value from meeting unemployed individual}} \right) + \underbrace{(1-u) \int \left\{ V(z, x_u, a) - V(z', x, a) \right\}^+ dG(z', x, a)}_{\text{value from meeting employed individual}} \right] - c(v) \right\} - \underbrace{r}_{\text{fixed cost}} - \underbrace{\mu J'(z)}_{\text{drift in } z} + \underbrace{\frac{\sigma^2}{2} J''(z)}_{\text{shocks to } z} dz''_{\text{shocks to } z}} \right]$$

### • Post vacancies v subject to $\mathbf{c}(\mathbf{v})$

• Denote by J(z) the value of hiring to a firm

$$\rho J(z) = \max_{v \ge 0} \left\{ v(1-\beta)q \left[ \sum_{a} \left( \underbrace{u(a) \left\{ V(z, x_u, a) - U(a) \right\}^+}_{\text{value from meeting unemployed individual}} \right) + \underbrace{(1-u) \int \left\{ V(z, x_u, a) - V(z', x, a) \right\}^+ dG(z', x, a)}_{\text{value from meeting employed individual}} \right] - c(v) \right\} - \underbrace{r}_{\text{fixed cost}} - \underbrace{\mu J'(z)}_{\text{drift in } z} + \underbrace{\frac{\sigma^2}{2} J''(z)}_{\text{shocks to } z} \right]$$

- Post vacancies v subject to  $\mathbf{c}(\mathbf{v})$
- $\circ\,$  Has to pay fixed cost  ${\bf r}$  to remain in hiring market

• Denote by J(z) the value of hiring to a firm

$$\rho J(z) = \max_{v \ge 0} \left\{ v(1-\beta)q \left[ \sum_{a} \left( \underbrace{u(a) \left\{ V(z, x_u, a) - U(a) \right\}^+}_{\text{value from meeting unemployed individual}} \right) + \underbrace{(1-u) \int \left\{ V(z, x_u, a) - V(z', x, a) \right\}^+ dG(z', x, a)}_{\text{value from meeting employed individual}} \right] - c(v) \right\} - \underbrace{r}_{\text{fixed cost}} - \underbrace{\mu J'(z)}_{\text{drift in } z} + \underbrace{\frac{\sigma^2}{2} J''(z)}_{\text{shocks to } z} \right]$$

- Post vacancies v subject to  $\mathbf{c}(\mathbf{v})$
- $\circ\,$  Has to pay fixed cost  ${\bf r}$  to remain in hiring market
- **Decision rules:** vacancy policy,  $\mathbf{v}(\mathbf{z})$ , and exit threshold,  $\mathbf{z}$

Back to main

# VACANCY POLICY

$$v(z) = \left\{ \underbrace{\frac{(1-\beta)q}{c_v}}_{\text{Individual is unemployed}} \left[ \underbrace{\sum_{a} u(a) \left\{ V(z, x_u, a) - U(a) \right\}^+}_{\text{Individual is unemployed}} + \underbrace{(1-u) \int \left\{ V(z, x_u, a) - V(z', x, a) \right\}^+ dG(z', x, a)}_{\text{Individual is employed}} \right] \right\}^{1/\eta}$$

## VACANCY POLICY

$$v(z) = \left\{ \underbrace{\frac{(1-\beta)q}{c_v}}_{\text{Individual is unemployed}} \left[ \underbrace{\sum_{a} u(a) \left\{ V(z, x_u, a) - U(a) \right\}^+}_{\text{Individual is unemployed}} + \underbrace{(1-u) \int \left\{ V(z, x_u, a) - V(z', x, a) \right\}^+ dG(z', x, a)}_{\text{Individual is employed}} \right] \right\}^{1/\tau}$$

#### Less labor market mismatch $\implies$ less vacancy creation

1. Larger share of individuals are employed

## VACANCY POLICY

$$v(z) = \left\{ \underbrace{\frac{(1-\beta)q}{c_v}}_{\text{Individual is unemployed}} \left[ \underbrace{\sum_{a} u(a) \left\{ V(z, x_u, a) - U(a) \right\}^+}_{\text{Individual is unemployed}} + \underbrace{(1-u) \int \left\{ V(z, x_u, a) - V(z', x, a) \right\}^+ dG(z', x, a)}_{\text{Individual is employed}} \right] \right\}^{1/r}$$

#### Less labor market mismatch $\implies$ less vacancy creation

- 1. Larger share of individuals are employed
- 2. Employed individuals are less mismatched



Value functions {U, V, E, J}; policies { $\bar{c}_u, \underline{z}_u(x, a), \underline{z}(z, x, a), \bar{c}(z, x, a)$ }; policies { $\underline{z}, v(z)$ }; numbers { $r, e, \mu, \bar{v}, \lambda, q$ }; and distributions {h(z), f(z), u(a), g(z, x, a)}; such that

- 1. Value and policy functions of unemployed, match and recruiting firm solve the respective problems
- 2. The aggregate entry rate e is consistent with individual behavior
- 3. The growth rate  $\mu$  is consistent with the entry rate
- 4. Aggregate vacancies  $\bar{v}$  are consistent with firm behavior and the finding rates are  $\lambda = \chi \bar{v}^{\alpha}$ ,  $q = \chi \bar{v}^{\alpha-1}$
- 5. Distributions solve respective KFE and are stationary

- 1. h(z) denotes the pdf of recruiting firms
- 2. f(z) denotes the vacancy-weighted pdf of recruiting firms
- 3. u(a) denotes the mass of unemployed individuals of age a
- 4. g(z, x, a) denotes the pdf of employed individuals

For all densities, upper case letters denote the corresponding cdf

The distribution of recruiting firms, h, solves the KFE

$$0 = \mu h'(z) + \frac{\sigma^2}{2} h''(z) + e\zeta \exp(-\zeta z), \qquad z > 0$$
 (1)

subject to,

$$h(0) = 0,$$
  $\int_{0}^{\infty} h(z)dz = 1,$   $e = \frac{\sigma^2}{2}h'(0)$  (2)

where e is the aggregate entry rate

• Last condition can be seen by integrating (1) from 0 to  $\infty$ , which gives  $0 = -\mu h(0) - \sigma^2/2h'(0) + e$ , and imposing h(0) = 0

(1) is a second-order ordinary differential equation with solution,

$$h(z) = \frac{e}{\mu - \frac{\sigma^2}{2}\zeta} \left[ \exp(-\zeta z) - \exp\left(-\frac{2\mu}{\sigma^2}z\right) \right]$$
(3)



(1) is a second-order ordinary differential equation with solution,

$$h(z) = \frac{e}{\mu - \frac{\sigma^2}{2}\zeta} \left[ \exp(-\zeta z) - \exp\left(-\frac{2\mu}{\sigma^2}z\right) \right]$$
(3)

where the growth rate of the economy is a function of the aggregate entry rate of entrepreneurs,

$$\mu = \frac{e}{\zeta} \tag{4}$$



The vacancy-weighted distribution of firms, f(z), equals the density of recruiting firms at z times the amount of vacancies they post,

$$f(z) = \frac{v(z)h(z)}{\bar{v}} \tag{5}$$

where v(z) is the firm's optimal vacancy policy and

$$\bar{v} = \int_{0}^{\infty} v\left(\tilde{z}\right) dh\left(\tilde{z}\right)$$



On the BGP, g(z, x, a) satisfies the KFE

$$0 = \mu \frac{\partial g(z, x, a)}{\partial z} + \frac{\sigma^2}{2} \frac{\partial^2 g(z, x, a)}{\partial z^2} + \underbrace{\lambda \frac{u(a)}{1-u} f(z) \mathbb{1} \{x = x_u\} \mathbb{1} \{z > \underline{z}^u(x_u, a)\}}_{\text{inflow from unemployment}} + \underbrace{\kappa(a-1)\mathbb{1} \{z > \underline{z}^u(x_u, a)\} g(z, x, a-1)}_{\text{inflow from aging}} - \underbrace{\kappa(a)g(z, x, a)}_{\text{outflow from aging}} + \underbrace{\lambda f(z)\mathbb{1} \{x = x_u\} \int \mathbb{1} \{z > \underline{z}^e(z', x', a)\} g(z, x, a-1)}_{\text{inflow from lower rungs in job ladder}} - \underbrace{\lambda [1 - F(\underline{z}^e(z, x, a))] g(z, x, a)}_{\text{outflow to higher rungs in job ladder}} + \underbrace{\psi\mathbb{1} \{z > \underline{z}^u(x, a)\} \pi(x)g(z, x_u, a)}_{\text{inflow from learning}} - \underbrace{\psi\mathbb{1} \{x = x_u\} g(z, x, a)}_{\text{outflow to entrepreneurship}} - \underbrace{\gamma(a)g(z, x, a)\Omega(\overline{z}^e(z, x, a))}_{\text{outflow to entrepreneurship}}$$

with  $\pi(x_u) = 0$  and  $g(z, x, 0) \equiv 0, \forall z, x$ , subject to workers exiting at the boundary so that the density is zero and the pdf integrates to one

### UNEMPLOYMENT

The mass of unemployed of each age group, u(a), satisfies,

$$0 = -\underbrace{\lambda \left[1 - F\left(\underline{z}^{u}(x_{u}, a)\right)\right] u(a)}_{\text{outflow to employment}} + \underbrace{(1 - u(a)) \sum_{x} \frac{\sigma^{2}}{2} \frac{\partial g(\underline{z}^{u}(x, a), x, a)}{\partial z}}_{\text{individuals drifting below the threshold}} + \underbrace{(1 - u(a))\psi\pi(x_{b})G\left(\underline{z}^{u}(x_{b}, a), x_{u}, a\right)}_{\text{individuals jumping below the threshold due to learning}} + \underbrace{1 \{a = 1\} \kappa(A)}_{\text{newborn}} - \underbrace{\kappa(a)u(a)}_{\text{outflow from aging}} + \underbrace{\kappa(a - 1)\left[u(a - 1) + (1 - u)\sum_{x} G\left(\underline{z}^{u}(x, a), x, a - 1\right)\right]}_{\text{inflow from aging}} + \underbrace{\kappa(a - 1)\left[u(a - 1) + (1 - u)\sum_{x} G\left(\underline{z}^{u}(x, a), x, a - 1\right)\right]}_{\text{inflow from aging}} + \underbrace{\kappa(a - 1)\left[u(a - 1) + (1 - u)\sum_{x} G\left(\underline{z}^{u}(x, a), x, a - 1\right)\right]}_{\text{inflow from aging}} + \underbrace{\kappa(a - 1)\left[u(a - 1) + (1 - u)\sum_{x} G\left(\underline{z}^{u}(x, a), x, a - 1\right)\right]}_{\text{inflow from aging}} + \underbrace{\kappa(a - 1)\left[u(a - 1) + (1 - u)\sum_{x} G\left(\underline{z}^{u}(x, a), x, a - 1\right)\right]}_{\text{inflow from aging}} + \underbrace{\kappa(a - 1)\left[u(a - 1) + (1 - u)\sum_{x} G\left(\underline{z}^{u}(x, a), x, a - 1\right)\right]}_{\text{inflow from aging}} + \underbrace{\kappa(a - 1)\left[u(a - 1) + (1 - u)\sum_{x} G\left(\underline{z}^{u}(x, a), x, a - 1\right)\right]}_{\text{inflow from aging}} + \underbrace{\kappa(a - 1)\left[u(a - 1) + (1 - u)\sum_{x} G\left(\underline{z}^{u}(x, a), x, a - 1\right)\right]}_{\text{inflow from aging}} + \underbrace{\kappa(a - 1)\left[u(a - 1) + (1 - u)\sum_{x} G\left(\underline{z}^{u}(x, a), x, a - 1\right)\right]}_{\text{inflow from aging}} + \underbrace{\kappa(a - 1)\left[u(a - 1) + (1 - u)\sum_{x} G\left(\underline{z}^{u}(x, a), x, a - 1\right)\right]}_{\text{inflow from aging}} + \underbrace{\kappa(a - 1)\left[u(a - 1) + (1 - u)\sum_{x} G\left(\underline{z}^{u}(x, a), x, a - 1\right)\right]}_{\text{inflow from aging}} + \underbrace{\kappa(a - 1)\left[u(a - 1) + (1 - u)\sum_{x} G\left(\underline{z}^{u}(x, a), x, a - 1\right)\right]}_{\text{inflow from aging}} + \underbrace{\kappa(a - 1)\left[u(a - 1) + (1 - u)\sum_{x} G\left(\underline{z}^{u}(x, a), x, a - 1\right)\right]}_{\text{inflow from aging}} + \underbrace{\kappa(a - 1)\left[u(a - 1) + (1 - u)\sum_{x} G\left(\underline{z}^{u}(x, a), x, a - 1\right)\right]}_{\text{inflow from aging}} + \underbrace{\kappa(a - 1)\left[u(a - 1) + (1 - u)\sum_{x} G\left(\underline{z}^{u}(x, a), x, a - 1\right)\right]}_{\text{inflow from aging}} + \underbrace{\kappa(a - 1)\left[u(a - 1) + (1 - u)\sum_{x} G\left(\underline{z}^{u}(x, a), x, a - 1\right)\right]}_{\text{inflow from aging}} + \underbrace{\kappa(a - 1)\left[u(a - 1) + (1 - u)\sum_{x} G\left(\underline{z}^{u}(x, a), x, a - 1\right)\right]}_{\text{inflow from aging}} + \underbrace{\kappa(a - 1)\left[u(a - 1) + (1 - u)\sum_{x} G\left(\underline{z}^{u}(x, a), x, a - 1\right)\right$$

+ 
$$\underbrace{(1 - u(a))\gamma(a)\int\Omega\left(\bar{c}^{e}(z, x, a)\right)G(dz, dx, a)}_{\text{entry to entrepreneurship}}$$

with the convention that u(0) = 0

$$JJ = \lambda \int \left[1 - F\left(\underline{z}^e(z, x, a)\right)\right] dG(z, x, a)$$

(8)



$$JJ = \lambda \int \left[1 - F\left(\underline{z}^e(z, x, a)\right)\right] dG(z, x, a)$$
$$= \frac{1}{1 - u} \sum_a m(a) \left(1 - \frac{u(a)}{m(a)}\right) \times \lambda \times \int \left[1 - F\left(\underline{z}^e(z, x, a)\right)\right] d\hat{G}(z, x|a) \quad (8)$$



$$JJ = \lambda \int [1 - F(\underline{z}^e(z, x, a))] dG(z, x, a)$$
$$= \frac{1}{1 - u} \sum_a m(a) \left(1 - \frac{u(a)}{m(a)}\right) \times \lambda \times \int [1 - F(\underline{z}^e(z, x, a))] d\hat{G}(z, x|a) \quad (8)$$

1. Changing m(a) will affect the aggregate JJ hazard since older individuals typically are better matched



$$JJ = \lambda \int [1 - F(\underline{z}^e(z, x, a))] dG(z, x, a)$$
$$= \frac{1}{1 - u} \sum_a m(a) \left(1 - \frac{u(a)}{m(a)}\right) \times \lambda \times \int [1 - F(\underline{z}^e(z, x, a))] d\hat{G}(z, x|a) \quad (8)$$

- 1. Changing m(a) will affect the aggregate JJ hazard since older individuals typically are better matched
- 2.  $\lambda$  may change as firms respond to the changed economic environment by adjusting vacancy creation



$$JJ = \lambda \int [1 - F(\underline{z}^e(z, x, a))] dG(z, x, a)$$
$$= \frac{1}{1 - u} \sum_a m(a) \left(1 - \frac{u(a)}{m(a)}\right) \times \lambda \times \int [1 - F(\underline{z}^e(z, x, a))] d\hat{G}(z, x|a) \quad (8)$$

- 1. Changing m(a) will affect the aggregate JJ hazard since older individuals typically are better matched
- 2.  $\lambda$  may change as firms respond to the changed economic environment by adjusting vacancy creation
- 3. F may change as firms change their vacancy posting decisions



$$JJ = \lambda \int [1 - F(\underline{z}^e(z, x, a))] \, dG(z, x, a)$$
$$= \frac{1}{1 - u} \sum_a m(a) \left(1 - \frac{u(a)}{m(a)}\right) \times \lambda \times \int [1 - F(\underline{z}^e(z, x, a))] \, d\hat{G}(z, x|a) \tag{8}$$

- 1. Changing m(a) will affect the aggregate JJ hazard since older individuals typically are better matched
- 2.  $\lambda$  may change as firms respond to the changed economic environment by adjusting vacancy creation
- 3. F may change as firms change their vacancy posting decisions
- 4. Aging may give rise to changes in a ge-conditional labor market mismatch,  $\hat{G}(z,x|a)$

$$e = \frac{1}{M} \left\{ (1-u) \int \Omega\left[\bar{c}^e(z,x,a)\right] \gamma(a) dG(z,x,a) + \Omega\left(\bar{c}^u\right) \sum_a u(a) \gamma(a) \right\}$$

(9)



## 3 EFFECTS OF AGING ON ENTRY RATE

$$e = \frac{1}{M} \left\{ (1-u) \int \Omega\left[\bar{c}^e(z,x,a)\right] \gamma(a) dG(z,x,a) + \Omega\left(\bar{c}^u\right) \sum_a u(a)\gamma(a) \right\}$$

$$=\sum_{a}m(a)\frac{\gamma(a)}{M}\left\{\left(1-\frac{u(a)}{m(a)}\right)\int\Omega\left[\bar{c}^{e}(z,x,a)\right]d\hat{G}(z,x|a)+\frac{u(a)}{m(a)}\Omega\left(\bar{c}^{u}\right)\right\}$$
(9)



### 3 EFFECTS OF AGING ON ENTRY RATE

$$e = \frac{1}{M} \left\{ (1-u) \int \Omega\left[\bar{c}^e(z,x,a)\right] \gamma(a) dG(z,x,a) + \Omega\left(\bar{c}^u\right) \sum_a u(a)\gamma(a) \right\}$$
$$= \sum_a m(a) \frac{\gamma(a)}{M} \left\{ \left(1 - \frac{u(a)}{m(a)}\right) \int \Omega\left[\bar{c}^e(z,x,a)\right] d\hat{G}(z,x|a) + \frac{u(a)}{m(a)} \Omega\left(\bar{c}^u\right) \right\}$$
(9)

1. Changing m(a) will affect the aggregate entry rate since age groups in general differ in their propensity to enter



#### **3** EFFECTS OF AGING ON ENTRY RATE

$$e = \frac{1}{M} \left\{ (1-u) \int \Omega\left[\bar{c}^{e}(z,x,a)\right] \gamma(a) dG(z,x,a) + \Omega\left(\bar{c}^{u}\right) \sum_{a} u(a) \gamma(a) \right\}$$
$$= \sum_{a} m(a) \frac{\gamma(a)}{M} \left\{ \left(1 - \frac{u(a)}{m(a)}\right) \int \Omega\left[\bar{c}^{e}(z,x,a)\right] d\hat{G}(z,x|a) + \frac{u(a)}{m(a)} \Omega\left(\bar{c}^{u}\right) \right\}$$
(9)

- 1. Changing m(a) will affect the aggregate entry rate since age groups in general differ in their propensity to enter
- 2. May affect  $\bar{c}^e(z, x, a)$  ( $\bar{c}^u$ ) as if for instance an older pool of hires discourages entry by driving up the effective cost of recruiting



$$e = \frac{1}{M} \left\{ (1-u) \int \Omega\left[\bar{c}^e(z,x,a)\right] \gamma(a) dG(z,x,a) + \Omega\left(\bar{c}^u\right) \sum_a u(a) \gamma(a) \right\}$$

$$=\sum_{a}m(a)\frac{\gamma(a)}{M}\left\{\left(1-\frac{u(a)}{m(a)}\right)\int\Omega\left[\bar{c}^{e}(z,x,a)\right]d\hat{G}(z,x|a)+\frac{u(a)}{m(a)}\Omega\left(\bar{c}^{u}\right)\right\}$$
(9)

- 1. Changing m(a) will affect the aggregate entry rate since age groups in general differ in their propensity to enter
- 2. May affect  $\bar{c}^e(z, x, a)$  ( $\bar{c}^u$ ) as if for instance an older pool of hires discourages entry by driving up the effective cost of recruiting
- 3. Age conditional labor market mismatch— $\hat{G}(z, x|a)$  and u(a)/m(a)—may change through equilibrium effects

APPENDIX D

**TARGET**: Salient features of aggregate firm & worker dynamism in BDS + SIPP in 2012–2014

- $\circ$  Monthly frequency
- $\circ~3~{\rm age}~{\rm groups}$
- $\circ\,$  Pre-set a few parameters to standard values  $\,$
- Remaining parameters internally


# CALIBRATED VALUES

|             | Description                      | Target                              | Value                       |
|-------------|----------------------------------|-------------------------------------|-----------------------------|
| PANE        | LA: LABOR MARKET MOBILITY        |                                     |                             |
| $c_v$       | Cost of vacancy creation         | Aggregate UE $(2005-07)$            | $4.5 * 10^{-4}$             |
| $\pi(x_b)$  | P(match is low productive)       | Aggregate EU                        | 0.5                         |
| $x_g$       | Productivity of high prod. match | Aggregate JJ                        | 1.3                         |
| $\psi$      | Rate of learning                 | Timing of decline in JJ with tenure | 0.043                       |
| b           | Flow value of unemployment       | Indifference at margin              | 1.09                        |
| Pane        | L B: ENTREPRENEURSHIP            |                                     |                             |
| ζ           | Innovation distribution          | Growth due to selection             | 20                          |
| $\gamma(a)$ | Entrepreneurship opportunity     | Entry rate and entry rate by age    | $[4.2; 4.5; 2.1] * 10^{-3}$ |
| C           | Dispersion in entry cost         | Decline in entry with tenure        | 72                          |
| Pane        | L C: FIRMS                       |                                     |                             |
| $\eta$      | Curvature of vacancy creation    | Size distribution of entrants       | 2                           |
| $\sigma$    | Shocks to productivity           | Size distribution                   | $7 * 10^{-3}$               |
| d           | Exit shock for firms             | Average exit rate                   | $3.8 * 10^{-4}$             |
| K           | Capital                          | Average firm size                   | 0.13                        |

# CALIBRATED VALUES

|             | Description                      | Target                              | Value                       |
|-------------|----------------------------------|-------------------------------------|-----------------------------|
| Pane        | LA: LABOR MARKET MOBILITY        |                                     |                             |
| $c_v$       | Cost of vacancy creation         | Aggregate UE $(2005-07)$            | $4.5 * 10^{-4}$             |
| $\pi(x_b)$  | P(match is low productive)       | Aggregate EU                        | 0.5                         |
| $x_g$       | Productivity of high prod. match | Aggregate JJ                        | 1.3                         |
| $\psi$      | Rate of learning                 | Timing of decline in JJ with tenure | 0.043                       |
| b           | Flow value of unemployment       | Indifference at margin              | 1.09                        |
| Pane        | L B: ENTREPRENEURSHIP            |                                     |                             |
| ζ           | Innovation distribution          | Growth due to selection             | 20                          |
| $\gamma(a)$ | Entrepreneurship opportunity     | Entry rate and entry rate by age    | $[4.2; 4.5; 2.1] * 10^{-3}$ |
| C           | Dispersion in entry cost         | Decline in entry with tenure        | 72                          |
| Pane        | L C: FIRMS                       |                                     |                             |
| $\eta$      | Curvature of vacancy creation    | Size distribution of entrants       | 2                           |
| $\sigma$    | Shocks to productivity           | Size distribution                   | $7 * 10^{-3}$               |
| d           | Exit shock for firms             | Average exit rate                   | $3.8 * 10^{-4}$             |
| K           | Capital                          | Average firm size                   | 0.13                        |

 $\circ\ C =>$  Elasticity of entry to net value

FIGURE XVII: TENURE PROFILE OF ENTREPRENEURSHIP ENTRY HAZARD



# CALIBRATED VALUES

|             | Description                      | Target                              | Value                       |
|-------------|----------------------------------|-------------------------------------|-----------------------------|
| Pane        | L A: LABOR MARKET MOBILITY       |                                     |                             |
| $c_v$       | Cost of vacancy creation         | Aggregate UE $(2005-07)$            | $4.5 * 10^{-4}$             |
| $\pi(x_b)$  | P(match is low productive)       | Aggregate EU                        | 0.5                         |
| $x_g$       | Productivity of high prod. match | Aggregate JJ                        | 1.3                         |
| $\psi$      | Rate of learning                 | Timing of decline in JJ with tenure | 0.043                       |
| b           | Flow value of unemployment       | Indifference at margin              | 1.09                        |
| Pane        | l B: Entrepreneurship            |                                     |                             |
| ζ           | Innovation distribution          | Growth due to selection             | 20                          |
| $\gamma(a)$ | Entrepreneurship opportunity     | Entry rate and entry rate by age    | $[4.2; 4.5; 2.1] * 10^{-3}$ |
| C           | Dispersion in entry cost         | Decline in entry with tenure        | 72                          |
| Pane        | L C: FIRMS                       |                                     |                             |
| $\eta$      | Curvature of vacancy creation    | Size distribution of entrants       | 2                           |
| $\sigma$    | Shocks to productivity           | Size distribution                   | $7 * 10^{-3}$               |
| d           | Exit shock for firms             | Average exit rate                   | $3.8 * 10^{-4}$             |
| K           | Capital                          | Average firm size                   | 0.13                        |

•  $\eta =>$  Elasticity of vacancy creation to net value



# CALIBRATED VALUES

|             | Description                      | Target                              | Value                       |
|-------------|----------------------------------|-------------------------------------|-----------------------------|
| Pane        | LA: LABOR MARKET MOBILITY        |                                     |                             |
| $c_v$       | Cost of vacancy creation         | Aggregate UE $(2005-07)$            | $4.5 * 10^{-4}$             |
| $\pi(x_b)$  | P(match is low productive)       | Aggregate EU                        | 0.5                         |
| $x_g$       | Productivity of high prod. match | Aggregate JJ                        | 1.3                         |
| $\psi$      | Rate of learning                 | Timing of decline in JJ with tenure | 0.043                       |
| b           | Flow value of unemployment       | Indifference at margin              | 1.09                        |
| Pane        | L B: ENTREPRENEURSHIP            |                                     |                             |
| ζ           | Innovation distribution          | Growth due to selection             | 20                          |
| $\gamma(a)$ | Entrepreneurship opportunity     | Entry rate and entry rate by age    | $[4.2; 4.5; 2.1] * 10^{-3}$ |
| C           | Dispersion in entry cost         | Decline in entry with tenure        | 72                          |
| Pane        | L C: FIRMS                       |                                     |                             |
| $\eta$      | Curvature of vacancy creation    | Size distribution of entrants       | 2                           |
| $\sigma$    | Shocks to productivity           | Size distribution                   | $7 * 10^{-3}$               |
| d           | Exit shock for firms             | Average exit rate                   | $3.8 * 10^{-4}$             |
| K           | Capital                          | Average firm size                   | 0.13                        |

## SUCCESS I: LIFE CYCLE FIRM DYNAMICS

• Calibration targets aggregate firm size and exit rate

#### $\implies$ Captures well life-cycle firm dynamics



## SUCCESS II: LIFE CYCLE LABOR MARKET MOBILITY

• Calibration targets aggregate JJ & EU hazard

 $\implies$  Supports job ladder and learning mechanisms



## SUCCESS III: LINKING FIRMS AND WORKERS

 $\circ~$  Matches hire & separation rates as function of firm growth

 $\implies$  Supports joint model of firm & worker dynamics



#### TABLE VI: PRE-SET PARAMETER VALUES

|          | Description                     | Target                           | Value  |
|----------|---------------------------------|----------------------------------|--------|
| ρ        | Discount rate                   | Annual interest rate of 4%       | 0.0034 |
| x        | Matching efficiency             | Normalization                    | 0.1    |
| $\alpha$ | Elasticity of matching function | Petrongolo and Pissarides (2001) | 0.7    |
| $\beta$  | Bargaining power                | Bagger et al $(2014)$            | 0.3    |



|            | Description                      | Target                              | Value           |
|------------|----------------------------------|-------------------------------------|-----------------|
| $c_v$      | Cost of vacancy creation         | Aggregate UE (2005–07)              | $4.5 * 10^{-4}$ |
| $\pi(x_b)$ | P(match is low productive)       | Aggregate EU                        | 0.5             |
| $x_g$      | Productivity of high prod. match | Aggregate JJ                        | 1.3             |
| $\psi$     | Rate of learning                 | Timing of decline in JJ with tenure | 0.043           |
| Ь          | Flow value of unemployment       | Indifference at margin              | 1.09            |



 $\circ\ \uparrow$  share of low-productive matches  $\implies\uparrow$  EU hazard

|            | Description                      | Target                              | Value           |
|------------|----------------------------------|-------------------------------------|-----------------|
| $c_v$      | Cost of vacancy creation         | Aggregate UE (2005–07)              | $4.5 * 10^{-4}$ |
| $\pi(x_b)$ | P(match is low productive)       | Aggregate EU                        | 0.5             |
| $x_g$      | Productivity of high prod. match | Aggregate JJ                        | 1.3             |
| $\psi$     | Rate of learning                 | Timing of decline in JJ with tenure | 0.043           |
| b          | Flow value of unemployment       | Indifference at margin              | 1.09            |

## CALIBRATION TARGETS—INDIVIDUALS

 $\circ~\uparrow$  share of low-productive matches  $\implies\uparrow$  EU hazard

 $\circ \uparrow x_q \implies \uparrow$  opportunity cost of JJ mobility  $\implies \downarrow$  JJ hazard

|            | Description                      | Target                              | Value           |
|------------|----------------------------------|-------------------------------------|-----------------|
| $c_v$      | Cost of vacancy creation         | Aggregate UE (2005–07)              | $4.5 * 10^{-4}$ |
| $\pi(x_b)$ | P(match is low productive)       | Aggregate EU                        | 0.5             |
| $x_g$      | Productivity of high prod. match | Aggregate JJ                        | 1.3             |
| $\psi$     | Rate of learning                 | Timing of decline in JJ with tenure | 0.043           |
| b          | Flow value of unemployment       | Indifference at margin              | 1.09            |



## CALIBRATION TARGETS—INDIVIDUALS

 $\circ~\uparrow$  share of low-productive matches  $\implies\uparrow$  EU hazard

 $\circ \uparrow x_g \implies \uparrow$  opportunity cost of JJ mobility  $\implies \downarrow$  JJ hazard

 $\circ \uparrow \psi \implies$  learning is faster  $\implies$  JJ falls quickly with tenure

|            | Description                      | Target                              | Value           |
|------------|----------------------------------|-------------------------------------|-----------------|
| $c_v$      | Cost of vacancy creation         | Aggregate UE (2005–07)              | $4.5 * 10^{-4}$ |
| $\pi(x_b)$ | P(match is low productive)       | Aggregate EU                        | 0.5             |
| $x_g$      | Productivity of high prod. match | Aggregate JJ                        | 1.3             |
| $\psi$     | Rate of learning                 | Timing of decline in JJ with tenure | 0.043           |
| b          | Flow value of unemployment       | Indifference at margin              | 1.09            |

|             | Description                  | Target                       | Value                       |
|-------------|------------------------------|------------------------------|-----------------------------|
| $\gamma(a)$ | Entrepreneurship opportunity | Entry rate by age            | $[4.2; 4.5; 2.1] * 10^{-3}$ |
| ζ           | Innovation distribution      | Growth due to selection      | 20                          |
| C           | Dispersion in entry cost     | Decline in entry with tenure | 72                          |

|             | Description                  | Target                       | Value                       |
|-------------|------------------------------|------------------------------|-----------------------------|
| $\gamma(a)$ | Entrepreneurship opportunity | Entry rate by age            | $[4.2; 4.5; 2.1] * 10^{-3}$ |
| ζ           | Innovation distribution      | Growth due to selection      | 20                          |
| C           | Dispersion in entry cost     | Decline in entry with tenure | 72                          |

 $\circ \ \Omega \sim U(-C,C)$ 

- $\circ \ \uparrow C \implies \downarrow$  change in entry for given change in value of entry
- $\circ~$  Opportunity cost is positively correlated with tenure and hence decline in entry with tenure informs C

|             | Description                  | Target                       | Value                       |
|-------------|------------------------------|------------------------------|-----------------------------|
| $\gamma(a)$ | Entrepreneurship opportunity | Entry rate by age            | $[4.2; 4.5; 2.1] * 10^{-3}$ |
| ζ           | Innovation distribution      | Growth due to selection      | 20                          |
| C           | Dispersion in entry cost     | Decline in entry with tenure | 72                          |

## CALIBRATION TARGETS—FIRMS

 $\circ \uparrow \eta \implies$  more costly to hire many workers  $\implies$  less dispersion in initial firm size

|   | Description                   | Target                        | Value           |
|---|-------------------------------|-------------------------------|-----------------|
| η | Curvature of vacancy creation | Size distribution of entrants | 2               |
| d | Exit shock for firms          | Average exit rate             | $3.8 * 10^{-4}$ |
| σ | Shocks to productivity        | Size distribution             | $7 * 10^{-3}$   |
| K | Capital                       | Average firm size             | 0.13            |



## CALIBRATION TARGETS—FIRMS

- $\circ \uparrow \eta \implies$  more costly to hire many workers  $\implies$  less dispersion in initial firm size
- $\circ~$  Introduce small probability of firm death, d, that is independent of firm productivity

|   | Description                   | Target                        | Value           |
|---|-------------------------------|-------------------------------|-----------------|
| η | Curvature of vacancy creation | Size distribution of entrants | 2               |
| d | Exit shock for firms          | Average exit rate             | $3.8 * 10^{-4}$ |
| σ | Shocks to productivity        | Size distribution             | $7 * 10^{-3}$   |
| K | Capital                       | Average firm size             | 0.13            |
|   |                               |                               |                 |



## CALIBRATION TARGETS—FIRMS

- $\circ \uparrow \eta \implies$  more costly to hire many workers  $\implies$  less dispersion in initial firm size
- $\circ~$  Introduce small probability of firm death, d, that is independent of firm productivity
- $\circ \uparrow \sigma \implies \uparrow \text{ dispersion in steady-state firm productivity } \implies \uparrow \\ \text{dispersion in steady-state firm size}$

|          | Description                   | Target                        | Value           |
|----------|-------------------------------|-------------------------------|-----------------|
| η        | Curvature of vacancy creation | Size distribution of entrants | 2               |
| d        | Exit shock for firms          | Average exit rate             | $3.8 * 10^{-4}$ |
| $\sigma$ | Shocks to productivity        | Size distribution             | $7 * 10^{-3}$   |
| K        | Capital                       | Average firm size             | 0.13            |
|          |                               |                               |                 |



#### FIGURE XX: WORKER MOBILITY BY TENURE



#### FIGURE XXII: UE HAZARD BY AGE





 $\circ~$  Model matches well average wages by tenure => confidence in  $\beta$ 

#### FIGURE XXIII: WAGE BY TENURE





#### FIGURE XXIV: AVERAGE WAGE BY FIRM AGE





#### FIGURE XXV: EXIT RATE BY FIRM SIZE





#### FIGURE XXVI: EMPLOYMENT SHARES



#### FIGURE XXVII: AVERAGE WAGE BY FIRM SIZE





## HIRES AND SEPARATIONS BY ORIGIN AND DESTINATION



#### FIGURE XXIX: AVERAGE WORKER AGE BY FIRM AGE





APPENDIX E

# Change the age composition of the economy to 1986 and evaluate its impact on dynamism

- Increase the rate at which older individuals exit the market,  $\kappa(3)$ 
  - 1. Increases the share of young people
  - 2. Shortens the time individuals expect to remain in the market
- The retirement age has not changed suggesting that individuals did not expect to spend less time in the market in the 1980s
- $\implies \textbf{Use original } \kappa(3) \textbf{ in value functions and new } \kappa(3) \textbf{ when computing individual transitions}$

## AGE COMPOSITION

 $\circ~$  Target change in share of older => Understates somewhat fall in the share of young

|             | (1)   | (2)   |   | (3)   | (4)   | (5)    | (6)    |
|-------------|-------|-------|---|-------|-------|--------|--------|
|             | Early |       | _ | Late  |       | Change |        |
|             | Data  | Model |   | Data  | Model | Data   | Model  |
| Young       | 0.492 | 0.434 |   | 0.356 | 0.339 | -0.136 | -0.095 |
| Middle aged | 0.231 | 0.289 |   | 0.208 | 0.226 | -0.023 | -0.063 |
| Older       | 0.277 | 0.277 |   | 0.436 | 0.436 | 0.159  | 0.158  |

TABLE VII: Share of individuals in each age group by period

Note: Empirical moments corresponds to the share of the labor force age 16-34 (young), 35-44 (middle aged) and 45+ (older) in 1986 and 2015 from the BLS.

 $\circ~$  Two opposing effects on vacancy creation



# JJ VERSUS UE

- $\circ~$  Two opposing effects on vacancy creation
  - 1. Firms post fewer vacancies conditional on productivity



# JJ VERSUS UE

- $\circ~$  Two opposing effects on vacancy creation
  - 1. Firms post fewer vacancies conditional on productivity
  - 2. Slower turnover rate shifts distribution of firms out

# JJ VERSUS UE

- $\circ~$  Two opposing effects on vacancy creation
  - 1. Firms post fewer vacancies conditional on productivity
  - 2. Slower turnover rate shifts distribution of firms out
  - $\implies$  Only modest decline in  $\lambda$
- $\circ~$  Two opposing effects on vacancy creation
  - 1. Firms post fewer vacancies conditional on productivity
  - 2. Slower turnover rate shifts distribution of firms out
  - $\implies$  Only modest decline in  $\lambda$
- $\circ\,$  In contrast, the less dynamic economy implies that



- $\circ~$  Two opposing effects on vacancy creation
  - 1. Firms post fewer vacancies conditional on productivity
  - 2. Slower turnover rate shifts distribution of firms out
  - $\implies$  Only modest decline in  $\lambda$
- $\circ~$  In contrast, the less dynamic economy implies that
  - 1. Employment has shifted up the ranks of firms

- $\circ~$  Two opposing effects on vacancy creation
  - 1. Firms post fewer vacancies conditional on productivity
  - 2. Slower turnover rate shifts distribution of firms out
  - $\implies$  Only modest decline in  $\lambda$
- In contrast, the less dynamic economy implies that
  - 1. Employment has shifted up the ranks of firms
  - 2. A higher share of matches has learned its productivity

- $\circ~$  Two opposing effects on vacancy creation
  - 1. Firms post fewer vacancies conditional on productivity
  - 2. Slower turnover rate shifts distribution of firms out
  - $\implies$  Only modest decline in  $\lambda$
- In contrast, the less dynamic economy implies that
  - 1. Employment has shifted up the ranks of firms
  - 2. A higher share of matches has learned its productivity
  - $\implies$  Less likely individual accepts job offer

- Two opposing effects on vacancy creation
  - 1. Firms post fewer vacancies conditional on productivity
  - 2. Slower turnover rate shifts distribution of firms out
  - $\implies$  Only modest decline in  $\lambda$
- $\circ\,$  In contrast, the less dynamic economy implies that
  - 1. Employment has shifted up the ranks of firms
  - 2. A higher share of matches has learned its productivity
  - $\implies$  Less likely individual accepts job offer

### $\implies$ JJ hazard falls over and above the decline in $\lambda$

#### FIGURE XXX: CHANGE IN VACANCY POLICY AND FIRM DISTRIBUTION





## Decker et al. (2017)

- 1. The fall in job reallocation is not due to a more benign economic environment
- 2. Older firms adjust employment less in response to productivity shocks
- 3. Employment has shifted towards older firms, accounting for some of the decline in the passthrough
- 4. The response has fallen within firm age groups



- 1. No change in variance of shocks
- 2. Lower passthrough of older firms as equilibrium outcome
  - $\circ~$  Employment change to productivity shock is linked to  $\# {\rm ranks}$
  - Log distance between ranks is larger further up the ladder
  - $\circ~$  Shock moves firm fewer ranks at top => smaller employment response
  - $\circ~$  Older, surviving firms are on average further up the ladder
- 3. Aging results in shift of employment towards older firms
- 4. Employment has also shifted up the ladder within age groups



## PASSTHROUGH IN YOUNG AND OLD ECONOMY

# TABLE VIII: PASSTHROUGH FROM PRODUCTIVITY TO EMPLOYMENT INNOVATIONS

|                                | (1)       | (2)         | (3)          |
|--------------------------------|-----------|-------------|--------------|
|                                | All firms | Young firms | Mature firms |
| $\Delta$ TFP                   | 3.504***  | 5.604***    | 2.394***     |
| Late period $\times\Delta$ TFP | -0.566*** | -0.212***   | -0.177***    |

Note: Young firms are <5 years, mature firms  $\geq 5$  years. Outcome variable is annual change in log firm size. Independent variable is annual change in log firm productivity. Weighted by employment.

#### $\implies$ Declines driven by weaker passthrough

#### TABLE IX: DECOMPOSITION OF CHANGE IN LOG OUTPUT

| (1)             | (2)                  | (3)                   | (4)        | (5)                      |
|-----------------|----------------------|-----------------------|------------|--------------------------|
| Age composition | Firm<br>productivity | Match<br>productivity | Net output | Discounted<br>net output |
| 0.014           | 0.044                | 0.004                 | 0.055      | -0.040                   |



#### TABLE IX: DECOMPOSITION OF CHANGE IN LOG OUTPUT

| (1)             | (2)                  | (3)                   | (4)        | (5)                      |
|-----------------|----------------------|-----------------------|------------|--------------------------|
| Age composition | Firm<br>productivity | Match<br>productivity | Net output | Discounted<br>net output |
| 0.014           | 0.044                | 0.004                 | 0.055      | -0.040                   |



#### TABLE IX: DECOMPOSITION OF CHANGE IN LOG OUTPUT

| (1)             | (2)                  | (3)                   | (4)        | (5)                      |
|-----------------|----------------------|-----------------------|------------|--------------------------|
| Age composition | Firm<br>productivity | Match<br>productivity | Net output | Discounted<br>net output |
| 0.014           | 0.044                | 0.004                 | 0.055      | -0.040                   |



$$e = \sum_{a} m(a) \frac{\gamma(a)}{M} \left\{ \left( 1 - \frac{u(a)}{m(a)} \right) \int \Omega\left[ \bar{c}^e(z, x, a) \right] d\hat{G}(z, x|a) + \frac{u(a)}{m(a)} \Omega\left( \bar{c}^u \right) \right\}$$

$$JJ = \sum_{a} m(a) \frac{1 - \frac{u(a)}{m(a)}}{1 - u} \times \lambda \times \int \left[1 - F\left(\underline{z}^{e}(z, x, a)\right)\right] d\hat{G}(z, x|a)$$



$$e = \sum_{a} m(a) \frac{\gamma(a)}{M} \left\{ \left( 1 - \frac{u(a)}{m(a)} \right) \int \Omega\left[ \bar{c}^{e}(z, x, a) \right] d\hat{G}(z, x|a) + \frac{u(a)}{m(a)} \Omega\left( \bar{c}^{u} \right) \right\}$$

$$JJ = \sum_{a} m(a) \frac{1 - \frac{u(a)}{m(a)}}{1 - u} \times \lambda \times \int \left[1 - F\left(\underline{z}^e(z, x, a)\right)\right] d\hat{G}(z, x|a)$$

TABLE X: DECOMPOSING THE CHANGE IN THE JJ AND ENTRY HAZARD

|                | (1)     | (2)    | (3)    | (4)   |
|----------------|---------|--------|--------|-------|
|                | Entry h | nazard | JJ has | zard  |
|                | %       | % of   | %      | % of  |
|                | change  | total  | change | total |
| Direct: $m(a)$ | 10.5    | 47.5   | 7.0    | 53.6  |

$$e = \sum_{a} m(a) \frac{\gamma(a)}{M} \left\{ \left( 1 - \frac{u(a)}{m(a)} \right) \int \Omega\left[ \bar{c}^e(z, x, a) \right] d\hat{G}(z, x|a) + \frac{u(a)}{m(a)} \Omega\left( \bar{c}^u \right) \right\}$$

$$JJ = \sum_{a} \frac{m(a)}{1-u} \times \lambda \times \int \left[1 - F\left(\underline{z}^{e}(z, x, a)\right)\right] d\hat{G}(z, x|a)$$

TABLE X: DECOMPOSING THE CHANGE IN THE JJ AND ENTRY HAZARD

|                | (1)     | (2)   | (3)    | (4)   |
|----------------|---------|-------|--------|-------|
|                | Entry h | azard | JJ has | zard  |
|                | %       | % of  | %      | % of  |
|                | change  | total | change | total |
| Direct: $m(a)$ | 10.5    | 47.5  | 7.0    | 53.6  |

$$e = \sum_{a} m(a) \frac{\gamma(a)}{M} \left\{ \left( 1 - \frac{u(a)}{m(a)} \right) \int \Omega\left[ \overline{c}^{e}(z, x, a) \right] d\hat{G}(z, x|a) + \frac{u(a)}{m(a)} \Omega\left( \overline{c}^{u} \right) \right\}$$
$$JJ = \sum_{a} m(a) \frac{1 - \frac{u(a)}{m(a)}}{1 - u} \times \lambda \times \int \left[ 1 - F\left( \underline{z}^{e}(z, x, a) \right) \right] d\hat{G}(z, x|a)$$

TABLE X: DECOMPOSING THE CHANGE IN THE JJ AND ENTRY HAZARD

|                                                                                              | (1)     | (2)    | (3)    | (4)   |
|----------------------------------------------------------------------------------------------|---------|--------|--------|-------|
|                                                                                              | Entry l | nazard | JJ ha  | zard  |
|                                                                                              | %       | % of   | %      | % of  |
|                                                                                              | change  | total  | change | total |
| Direct: $m(a)$                                                                               | 10.5    | 47.5   | 7.0    | 53.6  |
| Policy: $\bar{c}^e(z, x, a)/\lambda \left[1 - F\left(\underline{z}^e(z, x, a)\right)\right]$ | 1.2     | 5.4    | -17.3  | -133  |

$$e = \sum_{a} m(a) \frac{\gamma(a)}{M} \left\{ \left( 1 - \frac{u(a)}{m(a)} \right) \int \Omega\left[ \bar{c}^e(z, x, a) \right] d\hat{G}(z, x|a) + \frac{u(a)}{m(a)} \Omega\left( \bar{c}^u \right) \right\}$$

$$JJ = \sum_{a} m(a) \frac{1 - \frac{u(a)}{m(a)}}{1 - u} \times \lambda \times \int \left[1 - F\left(\underline{z}^{e}(z, x, a)\right)\right] d\hat{G}(z, x|a)$$

u(a)

TABLE X: DECOMPOSING THE CHANGE IN THE JJ AND ENTRY HAZARD

|                                                                                                    | (1)     | (2)   | (3)    | (4)   |
|----------------------------------------------------------------------------------------------------|---------|-------|--------|-------|
|                                                                                                    | Entry I | azard | JJ has | zard  |
|                                                                                                    | %       | % of  | %      | % of  |
|                                                                                                    | change  | total | change | total |
| Direct: $m(a)$                                                                                     | 10.5    | 47.5  | 7.0    | 53.6  |
| Policy: $\bar{c}^e(z, x, a) / \lambda \left[ 1 - F\left( \underline{z}^e(z, x, a) \right) \right]$ | 1.2     | 5.4   | -17.3  | -133  |

$$e = \sum_{a} m(a) \frac{\gamma(a)}{M} \left\{ \left( 1 - \frac{u(a)}{m(a)} \right) \int \Omega\left[ \bar{c}^e(z, x, a) \right] d\hat{G}(z, x|a) + \frac{u(a)}{m(a)} \Omega\left( \bar{c}^u \right) \right\}$$

$$JJ = \sum_{a} m(a) \frac{1 - \frac{u(a)}{m(a)}}{1 - u} \times \lambda \times \int \left[1 - F\left(\underline{z}^e(z, x, a)\right)\right] d\hat{G}(z, x|a)$$

TABLE X: DECOMPOSING THE CHANGE IN THE JJ AND ENTRY HAZARD

|                                                                                              | (1)     | (2)    | (3)    | (4)   |
|----------------------------------------------------------------------------------------------|---------|--------|--------|-------|
|                                                                                              | Entry h | nazard | JJ ha  | zard  |
|                                                                                              | %       | % of   | %      | % of  |
|                                                                                              | change  | total  | change | total |
| Direct: $m(a)$                                                                               | 10.5    | 47.5   | 7.0    | 53.6  |
| Policy: $\bar{c}^e(z, x, a)/\lambda \left[1 - F\left(\underline{z}^e(z, x, a)\right)\right]$ | 1.2     | 5.4    | -17.3  | -133  |
| Mismatch: $\hat{G}(z, x a)$                                                                  | 10.4    | 47.2   | 23.3   | 179   |
|                                                                                              |         |        |        |       |

$$e = \sum_{a} m(a) \frac{\gamma(a)}{M} \left\{ \left( 1 - \frac{u(a)}{m(a)} \right) \int \Omega\left[ \bar{c}^e(z, x, a) \right] d\hat{G}(z, x|a) + \frac{u(a)}{m(a)} \Omega\left( \bar{c}^u \right) \right\}$$

$$JJ = \sum_{a} m(a) \frac{1 - \frac{u(u)}{m(a)}}{1 - u} \times \lambda \times \int \left[1 - F\left(\underline{z}^e(z, x, a)\right)\right] d\hat{G}(z, x|a)$$

TABLE X: DECOMPOSING THE CHANGE IN THE JJ AND ENTRY HAZARD

|                                                                                        | (1)     | (2)    | (3)    | (4)   |
|----------------------------------------------------------------------------------------|---------|--------|--------|-------|
|                                                                                        | Entry l | nazard | JJ has | zard  |
|                                                                                        | %       | % of   | %      | % of  |
|                                                                                        | change  | total  | change | total |
| Direct: $m(a)$                                                                         | 10.5    | 47.5   | 7.0    | 53.6  |
| Policy: $\bar{c}^e(z,x,a)/\lambda \left[1-F\left(\underline{z}^e(z,x,a)\right)\right]$ | 1.2     | 5.4    | -17.3  | -133  |
| Mismatch: $\hat{G}(z, x a)$                                                            | 10.4    | 47.2   | 23.3   | 179   |
|                                                                                        |         |        |        |       |

$$e = \sum_{a} m(a) \frac{\gamma(a)}{M} \left\{ \left( 1 - \frac{u(a)}{m(a)} \right) \int \Omega\left[ \bar{c}^e(z, x, a) \right] d\hat{G}(z, x|a) + \frac{u(a)}{m(a)} \Omega\left( \bar{c}^u \right) \right\}$$

$$JJ = \sum_{a} m(a) \frac{1 - \frac{u(a)}{m(a)}}{1 - u} \times \lambda \times \int \left[1 - F\left(\underline{z}^e(z, x, a)\right)\right] d\hat{G}(z, x|a)$$

 $\langle \rangle$ 

TABLE X: DECOMPOSING THE CHANGE IN THE JJ AND ENTRY HAZARD

|                                                                                              | (1)         | (2)           | (3)         | (4)           |
|----------------------------------------------------------------------------------------------|-------------|---------------|-------------|---------------|
|                                                                                              | Entry h     | nazard        | JJ ha       | zard          |
|                                                                                              | %<br>change | % of<br>total | %<br>change | % of<br>total |
| Direct: $m(a)$                                                                               | 10.5        | 47.5          | 7.0         | 53.6          |
| Policy: $\bar{c}^e(z, x, a)/\lambda \left[1 - F\left(\underline{z}^e(z, x, a)\right)\right]$ | 1.2         | 5.4           | -17.3       | -133          |
| Mismatch: $\hat{G}(z, x a)$                                                                  | 10.4        | 47.2          | 23.3        | 179           |
| Total                                                                                        | 22.2        | 100           | 13.1        | 100           |

FIGURE XXXII: SHARE WITH HIGH MATCH PRODUCTIVITY



## HOW MUCH DOES JJ FALL WITH MISMATCH?

FIGURE XXXIII: DISTRIBUTION OF OLDER INDIVIDUALS AND JJ HAZARD



### WHAT MOMENTS OF THE DATA INFORM THE EFFECTS

FIGURE XXXIV: TENURE PROFILE OF JJ MOBILITY



 $\implies$  Large equilibrium effects are not hardwired

## **TENURE DISTRIBUTION**

FIGURE XXXV: TENURE DISTRIBUTION



## CHANGE IN LIFE-CYCLE FIRM DYNAMICS

#### Aging explains key changes in life-cycle firm dynamics

- Employment has shifted substantially towards older firms
- $\circ~$  Exit has fallen the most for old firms
- Age conditional firm size has declined





### CHANGE IN LIFE-CYCLE WORKER DYNAMICS

- Aging in model replicates patterns across states
- $\circ~$  Relatively larger effect on mobility rates late in careers



## SHIFT-SHARE ANALYSIS

|                   | (1)      | (2)    |
|-------------------|----------|--------|
|                   | Data     | Model  |
| Panel A: Firm dy  | namics   |        |
| Exit              | -0.008   | -0.003 |
| Direct effect     | -0.008   | -0.004 |
| % of total        | 96.8     | 142.4  |
| Incumbent         | -0.045   | -0.024 |
| Direct effect     | -0.010   | -0.018 |
| % of total        | 22.7     | 74.4   |
| Panel B: Worker   | dynamics |        |
| EU                | -0.003   | -0.001 |
| Direct effect     | -0.001   | -0.000 |
| % of total        | 20.7     | 34.4   |
| JJ                | -0.005   | -0.002 |
| $Direct \ effect$ | -0.002   | -0.001 |
| $\% \ of \ total$ | 40.8     | 51.7   |
|                   |          |        |

TABLE XI: Shift share analysis with firm and worker age  $% \left( {{{\left[ {{{X_{{\rm{I}}}} \right]}} \right]_{{\rm{ABLE}}}}} \right)$ 

### EMPLOYMENT SHARES BY FIRM SIZE

• Aging generates modest shift of employment to larger firms in line with the data over this period



$$\rho J(z) = \max_{v \ge 0} \left\{ v(1-\beta)q \left[ \sum_{a} \left( \frac{\tilde{m}(a)}{m(a)} \frac{u(a)}{m(a)} \left\{ V(z, x_u, a) - U(a) \right\}^+ \right) + \right. \right.$$

$$+\sum_{a}\left\{\tilde{\boldsymbol{m}}(\boldsymbol{a})\left(1-\frac{u(\boldsymbol{a})}{m(\boldsymbol{a})}\right)\int\left\{V(\boldsymbol{z},\boldsymbol{x}_{u},\boldsymbol{a})-V(\boldsymbol{z}',\boldsymbol{x},\boldsymbol{a})\right\}^{+}d\hat{\boldsymbol{G}}(\boldsymbol{z}',\boldsymbol{x}|\boldsymbol{a})\right\}\right]-c(\boldsymbol{v})\right\}-$$

$$-r - \mu J'(z) + \frac{\sigma^2}{2} J''(z)$$

- $\circ~$  Hold firms' expectations of age composition fixed at original age composition,  $\tilde{m}(a)$
- $\implies$  No change in age-composition externality

#### TABLE XII: NO DIRECT CONGESTION EXTERNALITY DUE TO AGING

|                        | (1)      | (2)                  | (3)   |
|------------------------|----------|----------------------|-------|
|                        | Baseline | No aging<br>of hires | Share |
| PANEL A: FIRM DYNAMICS | 1        |                      |       |
| Entry rate             | -0.012   | -0.008               | 72    |
| Job reallocation       | -0.039   | -0.031               | 80    |
| PANEL B: WORKER DYNAM  | AICS     |                      |       |
| EU hazard              | -0.001   | -0.001               | 87    |
| JJ hazard              | -0.002   | -0.002               | 72    |
| Panel C: Growth        |          |                      |       |
| Growth per worker      | -0.26    | -0.18                | 69    |

## NO AGING OF POTENTIAL ENTREPRENEURS

• Adjust  $\gamma(a)$  to have no direct effect through aging entrepreneurs

#### TABLE XIII: NO AGING OF POTENTIAL ENTREPRENEURS

| (1)                      | (2)                                                                     | (3)                                                                                                             |  |  |  |  |  |  |
|--------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Baseline                 | NO AGING<br>OF ENTREP.                                                  | Share                                                                                                           |  |  |  |  |  |  |
|                          |                                                                         |                                                                                                                 |  |  |  |  |  |  |
| -0.012                   | -0.003                                                                  | 27                                                                                                              |  |  |  |  |  |  |
| -0.039                   | -0.009                                                                  | 22                                                                                                              |  |  |  |  |  |  |
| PANEL B: WORKER DYNAMICS |                                                                         |                                                                                                                 |  |  |  |  |  |  |
| -0.001                   | -0.001                                                                  | 61                                                                                                              |  |  |  |  |  |  |
| -0.002                   | -0.002                                                                  | 65                                                                                                              |  |  |  |  |  |  |
|                          |                                                                         |                                                                                                                 |  |  |  |  |  |  |
| -0.26                    | -0.11                                                                   | 42                                                                                                              |  |  |  |  |  |  |
|                          | (1)<br>BASELINE<br>-0.012<br>-0.039<br>ICS<br>-0.001<br>-0.002<br>-0.26 | (1) (2)   BASELINE No AGING<br>OF ENTREP.   -0.012 -0.003   -0.039 -0.009   ICS   -0.001 -0.001   -0.002 -0.002 |  |  |  |  |  |  |

- Start with 1986 BGP
- $\circ~$  Adjust  $\kappa(3)$  and decision rules to 2014 BGP starting in 1990
- $\circ~$  Relatively fast convergence of entry rate
- $\circ~$  Level effect outweighs growth effect initially



Discussion Bacl

 $\circ~$  Would want to eventually solve for full transition path

 $\circ\,$  Difficulty is that sequence of distributions G(z,x,a;t) becomes a state

• Well known issue in search models—cannot boil down problem to shooting only an interest rate or average wage



|                                    | (1)   | (2)   | (3)   | (4)   |  | (5)    | (6)   | (7)   |  |  |
|------------------------------------|-------|-------|-------|-------|--|--------|-------|-------|--|--|
|                                    | Young |       | OI    | Old   |  | Change |       |       |  |  |
|                                    | Data  | Model | Data  | Model |  | Data   | Model | Share |  |  |
| PANEL A: INEQUALITY                |       |       |       |       |  |        |       |       |  |  |
| St.d of productivity               | 0.35  | 0.13  | 0.42  | 0.14  |  | 0.07   | 0.01  | 14    |  |  |
| VARIANCE OF FIRM PAY               | 0.40  | 0.45  | 0.48  | 0.46  |  | 0.08   | 0.02  | 21    |  |  |
| PANEL B: ANNUAL INCOME INNOVATIONS |       |       |       |       |  |        |       |       |  |  |
| St.d of innovations                | 0.55  | 0.54  | 0.51  | 0.52  |  | -0.04  | -0.02 | 62    |  |  |
| Skewness                           | -0.21 | -0.25 | -0.31 | -0.32 |  | -0.10  | -0.07 | 71    |  |  |

# 2ND AND 3RD MOMENTS OF INCOME INNOVATIONS



APPENDIX F


• Demographic data from the March CPS and Census Bureau's Intercensal Censi projections

 $\circ\,$  Establishment and firm dynamics from the BDS

 $\circ~$  Merged CPS monthly files for worker mobility rates

• State real GDP per worker from state private sector GDP (BEA), regional CPIs (BLS), and private sector employment (BDS)



## FOUR OTHER PROMINENT CHANGES

1. Increasing gender and racial diversity  $\bigcirc$ 



• Typically predict a small *increase* in dynamism



## FOUR OTHER PROMINENT CHANGES

- 1. Increasing gender and racial diversity  $\bullet$ 
  - Estimated coefficients on share female and non-white are in most cases not statistically significant
  - Typically predict a small *increase* in dynamism
- 3. Increasing educational attainment
  - Share college is associated with higher dynamics
  - Hence also predicts an *increase* in dynamism





## FOUR OTHER PROMINENT CHANGES

- 1. Increasing gender and racial diversity  $\bullet$ 
  - Estimated coefficients on share female and non-white are in most cases not statistically significant
  - Typically predict a small *increase* in dynamism
- 3. Increasing educational attainment
  - Share college is associated with higher dynamics
  - Hence also predicts an *increase* in dynamism
- 4. Slowdown in labor supply growth 🕑
  - Confirming Karahan et al. (2016), labor supply growth is positively correlated with entry
  - But does not alter conclusion regarding the importance of the age composition







#### FIGURE XLI: Share female, non-white and with a college degree





# LABOR SUPPLY GROWTH

