Computerization and Immigration: Theory and Evidence from the United States ¹

Gaetano Basso (Banca d'Italia), Giovanni Peri (UC Davis and NBER), Ahmed Rahman (USNA)

BdI-CEPR Conference, Roma - March 16th, 2018

Technology and Polarization

• Labor market polarization likely due to routine-substituting technological innovation (Autor et al.,

2003; Autor & Dorn, 2013)

Changes Employment (Natives+Foreign Born) by Skill Percentile, 1980-2010

Immigration

- Immigration significantly rose in the US in the last 30 years
- This phenomenon involved both high and low educated

Immigration

- Immigration significantly rose in the US in the last 30 years
- This phenomenon involved both high and low educated

Immigration

- Immigration significantly rose in the US in the last 30 years
- This phenomenon involved both high and low educated

Low and high-educated immigrants as share of the population $$D_{ata:}$$ IPUMS 1980-2010

The goal of this paper is to answer **two** simple, yet extremely relevant, **questions** we know little about

- Does technological growth attract migrants?
 - Is it true for both high and low educated (*skilled*)?
- ② Does immigration attenuate or exacerbate the tendency of native job polarization?
 - Can **cross-regional variation** in technology adoption inform us on natives and immigrants job polarization?
 - How the combination of technology and immigration **impact** (native) welfare in the long-run?

The goal of this paper is to answer **two** simple, yet extremely relevant, **questions** we know little about

- Does technological growth attract migrants?
 - Is it true for both high and low educated (*skilled*)?
- ② Does immigration attenuate or exacerbate the tendency of native job polarization?
 - Can **cross-regional variation** in technology adoption inform us on natives and immigrants job polarization?
 - How the combination of technology and immigration **impact** (native) welfare in the long-run?

The goal of this paper is to answer **two** simple, yet extremely relevant, **questions** we know little about

- Does technological growth attract migrants?
 - Is it true for both high and low educated (*skilled*)?
- Obes immigration attenuate or exacerbate the tendency of native job polarization?
 - Can **cross-regional variation** in technology adoption inform us on natives and immigrants job polarization?
 - How the combination of technology and immigration **impact** (native) welfare in the long-run?

We provide empirical evidence and theoretical support to understand the following:

- In the data, is technology adoption (computer use on the job) associated with immigration inflows (and polarization)?
- We then rationalize these facts in a simple GE model with 3 tasks, exogenous routine-substituting technological change and endogenous immigration
- Finally, we simulate the model equilibrium to provide counterfactual scenarios and back out welfare for natives

We provide empirical evidence and theoretical support to understand the following:

- In the data, is technology adoption (computer use on the job) associated with immigration inflows (and polarization)?
- We then rationalize these facts in a simple GE model with 3 tasks, exogenous routine-substituting technological change and endogenous immigration
- Finally, we simulate the model equilibrium to provide counterfactual scenarios and back out welfare for natives

We provide empirical evidence and theoretical support to understand the following:

- In the data, is technology adoption (computer use on the job) associated with immigration inflows (and polarization)?
- We then rationalize these facts in a simple GE model with 3 tasks, exogenous routine-substituting technological change and endogenous immigration
- Finally, we simulate the model equilibrium to provide counterfactual scenarios and back out welfare for natives

Immigration and Polarization

• Immigrants substantially change the shape of the polarization

Immigration and Polarization

• Immigrants substantially change the shape of the polarization

Changes in Foreign-born and Natives' Employment by Skill Percentile 1980-2010

Empirically, we observe that

- immigrant inflows **are associated** with routine-substituting technology adoption
- job polarization **at the low-end** can be mainly attributed to immigrants

Empirically, we observe that

- immigrant inflows **are associated** with routine-substituting technology adoption
- job polarization **at the low-end** can be mainly attributed to immigrants
- The model simulations predict that **immigration**:
 - contributes to technological progress
 - combined with technology adoption, **induces occupational upgrading**
 - is net welfare enhancing for natives

1 Introduction

- 2 Contributions to the literature
- Immigration and Technology Shocks: Definition and Identification
- 4 Empirical Results
- **5** Model and Simulations

6 Conclusions

This paper contributes to

An extensive literature on **polarization** and **routine-substituting** (Autor et al., 2003; Goos & Manning, 2007; Autor & Dorn, 2013)

Labor supply matters too (Cerina et al., 2017):

- Low-end polarization is mitigated by undocumented migrants (Mandelman & Zlate, 2014)
- We extend AD's framework to endogenous immigration

This paper contributes to

An extensive literature on **polarization** and **routine-substituting** (Autor et al., 2003; Goos & Manning, 2007; Autor & Dorn, 2013)

Labor supply matters too (Cerina et al., 2017):

- Low-end polarization is mitigated by undocumented migrants (Mandelman & Zlate, 2014)
- We extend AD's framework to endogenous immigration

This paper contributes to

An extensive literature on **polarization** and **routine-substituting** (Autor et al., 2003; Goos & Manning, 2007; Autor & Dorn, 2013)

Labor supply matters too (Cerina et al., 2017):

- Low-end polarization is mitigated by undocumented migrants (Mandelman & Zlate, 2014)
- We extend AD's framework to endogenous immigration

Even more literature on **immigration** (Card, 2001; Peri & Sparber, 2009; Ottaviano & Peri, 2012; Dustmann & al., 2015; Lull, 2017) We are the first to **show** that:

- Areas with technological progress attracts low-skilled migrants (Cadena & Kovak, 2016; Jaimovich & Siu, 2017: high-skilled ↑ only)
- *Absent* immigration, polarization, capital accumulation and growth would change

Technology and immigration

722 self-contained local labor markets: Commuting Zones (CZs)

Change in routine-substituting technology (proxy: PC use), 1980-2010

Change in foreign-born share, 1980-2010

Identification of technology adoption (I)

Hard to identify localized technology progress. Few examples:

Hard to identify localized technology progress. Few examples:

- $\bullet\,$ Beaudry et al. (2010) use survey firm-level computer adoption for $\sim\,$ 200 city
- AD proxy technological change with task-based routine-intensity of CZs

Hard to identify localized technology progress. Few examples:

- $\bullet\,$ Beaudry et al. (2010) use survey firm-level computer adoption for $\sim\,$ 200 city
- *AD* proxy technological change with task-based routine-intensity of CZs

We use an inferred measure of PC adoption for all 722 CZs (\sim to Autor et al., 2003):

- Industry-level PC use from the CPS as of mid-2000s
- We exploit variation in 1980 local labor markets industrial composition

Identification of technology adoption (II)

PC use_{c,t} =
$$\sum_{j} \omega_{j,c,1980} * \Delta \frac{\text{PC at work}_{j,US,t}}{empl_{j,US,1980}}$$

where:

•
$$\Delta \frac{\text{PC at work}_{j,US,1980}}{empl_{j,US,1980}} = \frac{\text{PC at work}_{j,US,2005}}{empl_{j,US,1980}} - \underbrace{\frac{\text{PC at work}_{j,US,1980}}{empl_{j,US,1980}}}_{\sim 0}$$
•
$$\Delta \frac{\text{PC at work}_{j,US,t}}{empl_{j,US,1980}} \sim \frac{\text{PC at work}_{j,US,2005}}{empl_{j,US,1980}}$$
•
$$\omega_{j,c,1980} = \frac{empl_{j,c,1980}}{\sum_{j} empl_{j,c,1980}}$$
c: CZ; t: survey year; j: industry

A B + A B +

э

Identification of technology adoption (II)

PC use_{c,t} =
$$\sum_{j} \omega_{j,c,1980} * \Delta \frac{\text{PC at work}_{j,US,t}}{empl_{j,US,1980}}$$

where:

•
$$\Delta \frac{\text{PC at work}_{j,US,1980}}{empl_{j,US,1980}} = \frac{\text{PC at work}_{j,US,2005}}{empl_{j,US,1980}} - \underbrace{\frac{\text{PC at work}_{j,US,1980}}{empl_{j,US,1980}}}_{\sim 0}$$
•
$$\Delta \frac{\text{PC at work}_{j,US,t}}{empl_{j,US,1980}} \sim \frac{\text{PC at work}_{j,US,2005}}{empl_{j,US,1980}}$$
•
$$\omega_{j,c,1980} = \frac{empl_{j,c,1980}}{\sum_{j} empl_{j,c,1980}}$$

c: CZ; *t*: survey year; *j*: industry

We control for generic labor demand shocks (Bartik-style proxy):

• Labor Productivity_{c,t} = $\sum_{j} \omega_{j,c,1980} * \Delta \log(wage)_{j,-c,t}$

Identification of technology adoption (III)

 PC use proxy positively correlates with other measure of RBTC

US and foreign born migration and PC adoption

 $\frac{\Delta Pop_{c,h,t}}{Pop_{c,1980}} = \alpha + \beta \Delta PC \text{ use}_{c,t} + \gamma \Delta Labor \text{ Productivity}_{c,t} + \phi_s + \Delta \varepsilon_{s,h,t} \quad (1)$

for each skill h, CZ c between 1980 and 2010.

US and foreign born employment

US and foreign born migration and PC adoption

 $\frac{\Delta Pop_{c,h,t}}{Pop_{c,1980}} = \alpha + \beta \Delta PC \text{ use}_{c,t} + \gamma \Delta Labor \text{ Productivity}_{c,t} + \phi_s + \Delta \varepsilon_{s,h,t} \quad (1)$

for each skill h, CZ c between 1980 and 2010.

	Low Skilled	High Skilled			
Panel A: Natives					
PC use	0.219	2.419**			
	(0.314)	(0.641)			
Labor Productivity	-0.790	-4.008*			
	(0.893)	(1.913)			
Obs.	722	722			
R2	0.64	0.55			
Panel B: Foreign Born					
PC use	0.555+	1.038**			
	(0.299)	(0.210)			
Labor Productivity	0.187	1.028^{+}			
	(0.562)	(0.556)			
Obs.	722	722			
R2	0.67	0.79			

Note: 722 CZs, 1980-2010. Standard errors (in parentheses) are clustered at the state level. **, *, + indicate

significance at 1-percent, 5-percent and 10-percent level, respectively.

US and foreign born employme

14/33

Computerization & Immigration

US and foreign born occupational share and PC adoption

 $\Delta EmplSh_{c,t}^{k} = \alpha + \beta \Delta PC \text{ use}_{c,t} + \gamma \Delta Labor \text{ Productivity}_{c,t} + \phi_s + \Delta \varepsilon_{s,t}^{k} \quad (2)$

for each CZ c, occupation/task group k between 1980 and 2010.

Summary Stats

US and foreign born occupational share and PC adoption

 $\Delta EmplSh_{c,t}^{k} = \alpha + \beta \Delta PC \text{ use}_{c,t} + \gamma \Delta Labor \text{ Productivity}_{c,t} + \phi_s + \Delta \varepsilon_{s,t}^{k} \quad (2)$

	$Manag/Prof\ \overline{Occ}$	Cler/Ret/Prod Occ	Serv/Trans Occ
Panel A: Natives			
PC use	0.558**	-0.646**	0.088
	(0.063)	(0.089)	(0.076)
Labor Productivity	-0.099	0.244	-0.146
	(0.164)	(0.273)	(0.241)
Obs.	722	722	722
R2	0.60	0.73	0.46
Panel B: Foreign Bo	orn		
PC use	0.595*	-1.036**	0.441^{+}
	(0.252)	(0.175)	(0.257)
Labor Productivity	-1.620	0.394	1.226
	(0.996)	(0.441)	(0.929)
Obs.	722	722	722
P2	0.51	0.41	0.43

for each CZ c, occupation/task group k between 1980 and 2010.

Note: 722 CZs, 1980-2010. Standard errors (in parentheses) are clustered at the state level. ******, *****, **+** indicate significance at 1-percent, 5-percent and 10-percent level, respectively.

15/33

Computerization & Immigration

- Similar results using task specialization indexes Tasks
- Additional results on US wages Wages
- Preliminary IV results exploiting early 'PC-adopters' CZs produce consistent results (forthcoming)
- **Pre-trends** indicates no patterns in group-specific migration Migration Pre-Trends

Similar results using task specialization indexes Tasks

- Additional results on US wages Wages
- Preliminary IV results exploiting early 'PC-adopters' CZs produce consistent results (forthcoming)
- Pre-trends indicates no patterns in group-specific migration

Similar results using task specialization indexes Tasks

- Additional results on US wages Wages
- Preliminary IV results exploiting early 'PC-adopters' CZs produce consistent results (forthcoming)
- Pre-trends indicates no patterns in group-specific migration

Our reduced form approach identifies few interesting facts:

- Immigrants inflows are associated with PC adoption
 It holds both for low-skilled (*new results*) and high-skilled
- PC adoption also correlated with natives' job polarization
 Immigrants contribute to low-end polarization
- 3 Effects on wages are consistent with a labor demand shock

Our reduced form approach identifies few interesting facts:

- **Immigrants** inflows are associated with PC adoption
 - It holds both for low-skilled (new results) and high-skilled
- PC adoption also correlated with natives' job polarization
 Immigrants contribute to low-end polarization
- 3 Effects on wages are consistent with a labor demand shock

Our reduced form approach identifies few interesting facts:

- **Immigrants** inflows are associated with PC adoption
 - It holds both for low-skilled (new results) and high-skilled
- PC adoption also correlated with natives' job polarization
 Immigrants contribute to low-end polarization
- Iffects on wages are consistent with a labor demand shock
Our reduced form approach identifies few interesting facts:

- **Immigrants** inflows are associated with PC adoption
 - It holds both for low-skilled (new results) and high-skilled
- PC adoption also correlated with natives' job polarization
 Immigrants contribute to low-end polarization
- Selfects on wages are consistent with a labor demand shock

Two sectors, goods and services are complementary in utility:

- CES utility
 - $U = (\rho C_s^{\frac{\sigma-1}{\sigma}} + (1-\rho) C_g^{\frac{\sigma-1}{\sigma}})^{\frac{\sigma}{\sigma-1}}$, with $\sigma \in (0,1]$
- Goods can be saved to accumulate capital and human capital

• $C_g = Y_g - p_k K - p_a L_a$; $C_s = Y_s$

- Service production linear ($Y_s = L_s$). Goods production:
 - **O Complementarity between** K and L_a

•
$$Y_g = \left[(\alpha_a L_a)^\beta + X^\beta \right]^{1/\beta}, \ \beta < 0, \ \alpha_a > 1$$

Substitution between K and L_r

•
$$X = \left[L_r^{\gamma} + K^{\gamma}
ight]^{1/\gamma}$$
, $\gamma \in (0, 1)$

Two sectors, goods and services are complementary in utility:

CES utility

•
$$U = (\rho C_s^{\frac{\sigma-1}{\sigma}} + (1-\rho) C_g^{\frac{\sigma-1}{\sigma}})^{\frac{\sigma}{\sigma-1}}$$
, with $\sigma \in (0,1]$

Goods can be saved to accumulate capital and human capital

•
$$C_g = Y_g - p_k K - p_a L_a; C_s = Y_s$$

Service production linear ($Y_s = L_s$). Goods production:

O Complementarity between *K* and *L*_a

•
$$Y_g = \left[(\alpha_a L_a)^\beta + X^\beta \right]^{1/\beta}, \ \beta < 0, \ \alpha_a > 1$$

Substitution between K and L_r

•
$$X = \left[L_r^{\gamma} + K^{\gamma}
ight]^{1/\gamma}$$
, $\gamma \in (0, 1)$

Two sectors, goods and services are complementary in utility:

CES utility

•
$$U = (\rho C_s^{\frac{\sigma-1}{\sigma}} + (1-\rho) C_g^{\frac{\sigma-1}{\sigma}})^{\frac{\sigma}{\sigma-1}}$$
, with $\sigma \in (0,1]$

Goods can be saved to accumulate capital and human capital

•
$$C_g = Y_g - p_k K - p_a L_a; C_s = Y_s$$

Service production linear ($Y_s = L_s$). Goods production:

O Complementarity between *K* and *L*_a

•
$$Y_g = \left[(\alpha_a L_a)^\beta + X^\beta \right]^{1/\beta}, \ \beta < 0, \ \alpha_a > 1$$

Substitution between K and L_r

•
$$X = \left[L_r^{\gamma} + K^{\gamma}
ight]^{1/\gamma}$$
, $\gamma \in (0, 1)$

Two sectors, goods and services are complementary in utility:

CES utility

•
$$U = (\rho C_s^{\frac{\sigma-1}{\sigma}} + (1-\rho) C_g^{\frac{\sigma-1}{\sigma}})^{\frac{\sigma}{\sigma-1}}$$
, with $\sigma \in (0,1]$

Goods can be saved to accumulate capital and human capital

•
$$C_g = Y_g - p_k K - p_a L_a; C_s = Y_s$$

Service production linear ($Y_s = L_s$). Goods production:

O Complementarity between *K* and *L*_a

•
$$Y_g = \left[(\alpha_a L_a)^\beta + X^\beta \right]^{1/\beta}$$
, $\beta < 0$, $\alpha_a > 1$

2 Substitution between *K* and *L_r*

•
$$X = \left[L_r^\gamma + K^\gamma
ight]^{1/\gamma}$$
, $\gamma \in (0,1)$

Two sectors, goods and services are complementary in utility:

CES utility

•
$$U = (\rho C_s^{\frac{\sigma-1}{\sigma}} + (1-\rho) C_g^{\frac{\sigma-1}{\sigma}})^{\frac{\sigma}{\sigma-1}}$$
, with $\sigma \in (0,1]$

Goods can be saved to accumulate capital and human capital

•
$$C_g = Y_g - p_k K - p_a L_a; C_s = Y_s$$

Service production linear ($Y_s = L_s$). Goods production:

O Complementarity between *K* and *L*_a

•
$$Y_g = \left[(\alpha_a L_a)^\beta + X^\beta \right]^{1/\beta}$$
, $\beta < 0$, $\alpha_a > 1$

2 Substitution between *K* and *L_r*

•
$$X = \left[L_r^\gamma + K^\gamma
ight]^{1/\gamma}$$
, $\gamma \in (0,1)$

Labor amounts and migration (I)

- Labor ability is ranked: **manual** simpler than **routine**, simpler than **analytical**
- Each worker *i* has η_i amount of routine ability (manual ability stand'd to 1)
- Workers can upgrade to analytical ability (φη_i, φ > 1) at cost p_a
- Two thresholds: Equilibrium wages makes workers indifferent between manual and routine and routine and analytical

Labor amounts and migration (I)

- Labor ability is ranked: **manual** simpler than **routine**, simpler than **analytical**
- Each worker *i* has η_i amount of routine ability (manual ability stand'd to 1)
- Workers can upgrade to analytical ability (φη_i, φ > 1) at cost p_a
- Two thresholds: Equilibrium wages makes workers indifferent between manual and routine and routine and analytical

$$w_r\eta^* = w_s,$$

$$w_a \phi \hat{\eta} - p_a = w_r \hat{\eta}$$

Unskilled migration positively depends on low-skill manual wages (Grogger & Hanson, 2011)

•
$$mig = \begin{cases} (1+w_s)^{\epsilon} - (k+p_s) & \text{if } (1+w_s)^{\epsilon} - k > p_s \\ 0 & \text{otherwise} \end{cases}$$

• ϵ governs the sensitivity to manual wages ($\epsilon \in (0, 1)$)

Unskilled migration positively depends on low-skill manual wages (Grogger & Hanson, 2011)

•
$$mig = \begin{cases} (1+w_s)^{\epsilon} - (k+p_s) & \text{if } (1+w_s)^{\epsilon} - k > p_s \\ 0 & \text{otherwise} \end{cases}$$

• ϵ governs the sensitivity to manual wages ($\epsilon \in (0, 1)$)

Unskilled migration positively depends on low-skill manual wages (Grogger & Hanson, 2011)

•
$$mig = \begin{cases} (1+w_s)^{\epsilon} - (k+p_s) & \text{if } (1+w_s)^{\epsilon} - k > p_s \\ 0 & \text{otherwise} \end{cases}$$

• ϵ governs the sensitivity to manual wages ($\epsilon \in (0, 1)$)

Assuming
$$\eta \sim f(\eta) = e^{-\eta}$$
, labor amounts are:

•
$$L_r = \int_{\eta^*}^{\hat{\eta}} \eta e^{-\eta} d\eta$$

• $L_a = \int_{\hat{\eta}}^{\infty} \phi \eta e^{-\eta} d\eta$
• $L_m = 1 + \operatorname{mig} - e^{-\eta^*}$

Partial Equilibrium Intuition

Supply of low-educated migration and service wages: No migration, no tech (ε^s given)

Partial Equilibrium Intuition

Supply of low-educated migration and service wages: $\downarrow p_k \ (\epsilon^s \text{ given})$

Partial Equilibrium Intuition

Supply of low-educated migration and service wages: $\downarrow p_k$ & demand effect (ε^s given)

We depart from Autor and Dorn (2013) in three ways:

- Native workers can upgrade their skills and occupation (by accumulating human capital endogenously):
- **2** Endogenous migration in response to $p_k \downarrow$
- \Rightarrow We simulate the model to evaluate **counterfactual** scenarios

We set the parameters as to **match initial labor shares** and **low-skilled migration inflows** in the last 30 years:

- Elasticity of substitution in *production* higher than that in *consumption* $(\frac{1}{1-\gamma} > \sigma)$
 - $\sigma = 0.5$, $\beta = -10$, $\gamma = 0.5$
 - $\rho = 0.025, \ \alpha_a = 7.5$
- Other parameters
 - $\phi = 2$, $p_m = 0.25$ (simulation with p_a ongoing work)
 - $\epsilon_s = 0.2$
 - ⇒ We simulate the model for a **225% exogenous decline** of p_k cumulated over 30 years

We set the parameters as to **match initial labor shares** and **low-skilled migration inflows** in the last 30 years:

• Elasticity of substitution in *production* higher than that in *consumption* $(\frac{1}{1-\gamma} > \sigma)$

•
$$\sigma = 0.5, \ \beta = -10, \gamma = 0.5$$

•
$$\rho = 0.025, \ \alpha_a = 7.5$$

- Other parameters
 - $\phi = 2$, $p_m = 0.25$ (simulation with p_a ongoing work)
 - $\epsilon_s = 0.2$
 - \Rightarrow We simulate the model for a **225% exogenous decline** of p_k cumulated over 30 years

We set the parameters as to **match initial labor shares** and **low-skilled migration inflows** in the last 30 years:

• Elasticity of substitution in *production* higher than that in *consumption* $(\frac{1}{1-\gamma} > \sigma)$

•
$$\sigma = 0.5, \ \beta = -10, \gamma = 0.5$$

•
$$\rho = 0.025, \ \alpha_a = 7.5$$

- Other parameters
 - $\phi = 2$, $p_m = 0.25$ (simulation with p_a ongoing work)
 - $\epsilon_s = 0.2$
 - \Rightarrow We simulate the model for a **225% exogenous decline** of p_k cumulated over 30 years

Model simulations (figures)

1) Technological progress without migration generates employment polarization:

Changes in Native Employment Levels from Higher Computerization

Model simulations (figures)

2) Technological progress attracts low-skilled migrants:

Changes in Unskilled Migrants from Higher Computerization

Model simulations (figures)

3) Immigration allows natives to upgrade their skills:

3

Model simulations (table)

We *target* a 15 p.p. increase in migration, initial occupational shares ($L_a = 0.27$, $L_r = 0.35$, $L_m = 0.38$) and a 225 percent \downarrow in computer price

Variables	W/ Baseline	No	Driving
	Migration	Migration	Channel w/Migration
$\% \Delta Population$	14.4		
$\Delta L_{manual}^{natives}$	-1.8		
$\Delta L_{routine}^{natives}$	-20.2		
$\Delta L_{analytical}^{natives}$	21.9		
ΔW_s	71.0		
$\%\Delta W_r$	-47.8		
$\%\Delta W_a$	262.3		
$\%\Delta K$	367.4		
$\%\Delta Y_{goods}$	98.8		

Table. Baseline Simulation

Occupation Shares 1980-2010

Model simulations (table)

We *target* a 15 p.p. increase in migration, initial occupational shares ($L_a = 0.27$, $L_r = 0.35$, $L_m = 0.38$) and a 225 percent \downarrow in computer price

Variables	W/ Baseline	No	Driving
	Migration	Migration	Channel w/Migration
$\% \Delta Population$	14.4	0	$\uparrow w_s$ given $\varepsilon_s > 0$
$\Delta L_{manual}^{natives}$	-1.8	4.6	$\downarrow \hat\eta$, η^*
$\Delta L_{routine}^{natives}$	-20.2	-22.9	$\downarrow \eta^*$
$\Delta L_{analytical}^{natives}$	21.9	18.3	$\downarrow \hat{\eta}$
$\%\Delta W_s$	71.0	160.1	↑ mig
ΔW_r	-47.8	-51.5	$\uparrow L_r$
ΔW_a	262.3	236.1	L _a , K complements
ΔK	367.4	333.6	L _a , K complements
$\%\Delta Y_{goods}$	98.8	84.5	

G. Basso (BdI)

Table. Baseline Simulation

Occupation Shares 1980-2010

Extension: High-skilled migrants

High-skill migrants supply analytical tasks depending on the level of **analytical wages**:

$$\eta_{s}\left[\left(1+w_{a}\right)^{\epsilon_{a}}-k\right]\geq p_{m}^{a}$$

Extension: High-skilled migrants

High-skill migrants supply analytical tasks depending on the level of **analytical wages**:

$$\eta_s \left[(1+w_a)^{\epsilon_a} - k
ight] \geq p_m^a$$

Now, we have two sources of analytical labor, possibly competing:

$$L_{a} = \int_{\hat{\eta}}^{\infty} \phi \eta e^{-\eta} d\eta + \int_{\bar{\eta}}^{\infty} \phi \eta_{s} e^{-\eta} d\eta$$
(3)

Extension: High-skilled migrants

High-skill migrants supply analytical tasks depending on the level of **analytical wages**:

$$\eta_s \left[(1+w_a)^{\epsilon_a} - k
ight] \geq p_m^a$$

Now, we have two sources of analytical labor, possibly competing:

$$L_{a} = \int_{\hat{\eta}}^{\infty} \phi \eta e^{-\eta} d\eta + \int_{\bar{\eta}}^{\infty} \phi \eta_{s} e^{-\eta} d\eta$$
(3)

Skilled migration:

- $\varepsilon_a > 0$ s: drop in p_k raises skilled migration to ~ 7.5 percent of total native skilled population
- Allows for **more capital** accumulation (through production complementarities)
- Favor unskilled migrants inflows (through demand)
- \Rightarrow Although quantitatively different, main results hold

Graphs

Technological progress attracts high-skilled migrants:

Changes in Unskilled Migrants from Higher Computerization

Natives in manufacturing gain (higher earnings and cheaper services):

•
$$Util_{manuf} = \left(\frac{\rho^{1+\sigma}w_s^{-\sigma} + (1-\rho)^{1+\sigma}}{(1-\rho)^{\sigma} + \rho^{\sigma}w_s^{1-\sigma}}\right) \left(w_r L_r + w_a L_a\right) \left(L_a + L_r\right).$$

- ₹ 🖬 🕨

Natives in manufacturing gain (higher earnings and cheaper services):

•
$$Util_{manuf} = \left(\frac{\rho^{1+\sigma}w_s^{-\sigma} + (1-\rho)^{1+\sigma}}{(1-\rho)^{\sigma} + \rho^{\sigma}w_s^{1-\sigma}}\right) \left(w_r L_r + w_a L_a\right) \left(L_a + L_r\right).$$

Natives who work in services lose as lower wages more than offset cheaper services:

•
$$Util_{serv} = \left(\frac{\rho^{1+\sigma}w_s^{-\sigma} + (1-\rho)^{1+\sigma}}{(1-\rho)^{\sigma} + \rho^{\sigma}w_s^{1-\sigma}}\right)(w_s L_{s,nat}L_{s,nat}).$$

• What is the net effect of immigration?

Natives in manufacturing gain (higher earnings and cheaper services):

•
$$Util_{manuf} = \left(\frac{\rho^{1+\sigma}w_s^{-\sigma} + (1-\rho)^{1+\sigma}}{(1-\rho)^{\sigma} + \rho^{\sigma}w_s^{1-\sigma}}\right) \left(w_r L_r + w_a L_a\right) \left(L_a + L_r\right).$$

Natives who work in services lose as lower wages more than offset cheaper services:

•
$$Util_{serv} = \left(\frac{\rho^{1+\sigma}w_s^{-\sigma} + (1-\rho)^{1+\sigma}}{(1-\rho)^{\sigma} + \rho^{\sigma}w_s^{1-\sigma}}\right) (w_s L_{s,nat} L_{s,nat}).$$

• What is the net effect of immigration?

Migration in the U.S. has been net positive for overall welfare:

Changes in Native Aggregate Utility with Both Types of Migration

- Computerization alone raises welfare by 5.4 percent (blue line)
- Computerization and both types of migration raises welfare by 21.8 percent (green line)
- 🛛 As long as native labor share in services is notatoo large 🛌 🧃 🔊

Migration in the U.S. has been net positive for overall welfare:

Changes in Native Aggregate Utility with Both Types of Migration

- Computerization alone raises welfare by 5.4 percent (blue line)
- Computerization and both types of migration raises welfare by 21.8 percent (green line)
- 🌢 As long as native labor share in services is notatoo large 🛌 🛓 🔊

Migration in the U.S. has been net positive for overall welfare:

Changes in Native Aggregate Utility with Both Types of Migration

- Computerization alone raises welfare by 5.4 percent (blue line)
- Computerization and both types of migration raises welfare by 21.8 percent (green line)

🛛 As long as native labor share in services is notatoo large 🚛 💿 🖉

Migration in the U.S. has been net positive for overall welfare:

Changes in Native Aggregate Utility with Both Types of Migration

- Computerization alone raises welfare by 5.4 percent (blue line)
- Computerization and both types of migration raises welfare by 21.8 percent (green line)
- As long as native labor share in services is not too large = → = → ٩ <

Routine-substituting technological progress proxied by country-wise PC use:

- attracts low-skilled immigrants through higher service wages
 - We document **unskilled migration** response which complements existing work (Moretti, 2013; Cadena & Kovak, 2016): due to an increase demand for manual tasks (Mazzolari & Ragusa, 2013)
 - High-skilled migration response comes at no surprise
- ② Associated with job polarization
 - Consistent with previous literature
 - But no effect on service employment for natives

Routine-substituting technological progress proxied by country-wise PC use:

- attracts low-skilled immigrants through higher service wages
 - We document **unskilled migration** response which complements existing work (Moretti, 2013; Cadena & Kovak, 2016): due to an increase demand for manual tasks (Mazzolari & Ragusa, 2013)
 - High-skilled migration response comes at no surprise
- Associated with job polarization
 - Consistent with previous literature
 - But no effect on service employment for natives
Immigration:

- Further hastens technological progress
- Induces occupational upgrading among natives in the long run: natives join more routine & analytical occupations (i.e., balance back unbalanced growth)
- It as negative effects on service wages
- \Rightarrow Natives' welfare depends on the share of service workers at t_0
 - Overall welfare increased in the baseline parametrization

Immigration:

- Further hastens technological progress
- Induces occupational upgrading among natives in the long run: natives join more routine & analytical occupations (i.e., balance back unbalanced growth)
- It as negative effects on service wages
- \Rightarrow Natives' welfare depends on the share of service workers at t_0
 - Overall welfare increased in the baseline parametrization

Immigration:

- Further hastens technological progress
- Induces occupational upgrading among natives in the long run: natives join more routine & analytical occupations (i.e., balance back unbalanced growth)
- It as negative effects on service wages
- \Rightarrow Natives' welfare depends on the share of service workers at t_0
 - Overall welfare increased in the baseline parametrization

Appendix

・ロン ・部 と ・ ヨ と ・ ヨ と …

æ

990

US and foreign born employment and PC adoption

 $\frac{\Delta Empl_{c,h,t}}{Empl_{c,1980}} = \alpha + \beta \Delta PC \text{ use}_{c,t} + \gamma \Delta Labor \text{ Productivity}_{c,t} + \phi_s + \Delta \varepsilon_{s,h,t} \quad (4)$

for each skill h, CZ c between 1980 and 2010.

US and foreign born employment and PC adoption

 $\frac{\Delta Empl_{c,h,t}}{Empl_{c,1980}} = \alpha + \beta \Delta PC \text{ use}_{c,t} + \gamma \Delta Labor \text{ Productivity}_{c,t} + \phi_s + \Delta \varepsilon_{s,h,t}$ (4)

for each skill h, CZ c between 1980 and 2010.

	Low Skilled	High Skilled
Panel A: Natives		
PC use	0.115	2.047**
	(0.304)	(0.635)
Labor Productivity	-0.681	-3.745^{+}
	(0.896)	(2.080)
Obs.	722	722
R2	0.59	0.52
Panel B: Foreign B	orn	
PC use	0.416	1.008**
	(0.301)	(0.199)
Labor Productivity	0.247	1.078^{+}
	(0.549)	(0.539)
Obs.	722	722
R2	0.66	0.79

Note: 722 CZs, 1980-2010. Standard errors (in parentheses) are clustered at the state level. **, *, + indicate

significance at 1-percent 5-percent and 10-percent level respectively

G. Basso (BdI)

Computerization & Immigration

Observed Occupational Share Changes

Table. Occupational Employment Shares

	Managers/prof/	Clerical/sales/	Services/transp/
	tech	operators	construct
Prevalently	Analytical/Cognitive	Routine	Manual
Panel A: Natives			
1980	0.276	0.409	0.315
2010	0.405	0.304	0.292
Delta	0.129	-0.106	-0.023
Panel B: Foreign born			
1980	0.241	0.420	0.339
2010	0.294	0.250	0.456
Delta	0.053	-0.169	0.116

Back to Regressions

Back to Simulation

- ● ● ●

э

э

We construct measures of task supply based on the DOT indexes of **Manual**, **Routine** and **Analytical Task** intensity (Peri & Sparber, 2009; Autor & Dorn, 2013)

	Analytical/	Routine	Manual/
	Cognitive		Communication
Managers/prof/tech	0.807	0.343	0.478
Clerical/sales/operators	0.415	0.664	0.358
Services/construct/transp	0.322	0.451	0.737
Average Specialization	0.493	0.505	0.517
% of Total	32%	34%	34%

Occupations and Task Index in 1980

Natives and Foreign-born Task Specialization Indexes

	Analytical	Manual	Routine
Panel A. Natives		All	
1980	0.321	0.339	0.340
2010	0.370	0.331	0.299
Delta %	15.26	-2.36	-12.06
Panel B. Foreign-born		All	
1980	0.292	0.353	0.355
2010	0.313	0.367	0.319
Delta %	7.19	3.97	-10.14

US and foreign born task specialization and PC adoption

 $\Delta EmplSh_{c,h,t}^{k} = \alpha + \beta \Delta PC \text{ use}_{c,t} + \gamma \Delta Labor \text{ Productivity}_{c,t} + \phi_s + \Delta \varepsilon_{s,h,t}^{k}$ (5)

for each skill h, CZ c, occupation/task group k between 1980 and 2010.

US and foreign born task specialization and PC adoption

 $\Delta EmplSh_{c,h,t}^{k} = \alpha + \beta \Delta PC \text{ use}_{c,t} + \gamma \Delta Labor \text{ Productivity}_{c,t} + \phi_s + \Delta \varepsilon_{s,h,t}^{k}$ (5)

	Analytical Task	Routine Task	Manual Task
Panel A: Natives			
PC use	0.142**	-0.255**	0.113**
	(0.036)	(0.025)	(0.016)
Labor Productivity	-0.075	0.093	-0.018
	(0.074)	(0.064)	(0.044)
Obs.	722	722	722
R2	0.52	0.74	0.57
Panel B: Foreign B	orn		
PC use	0.078	-0.208**	0.130^{+}
	(0.104)	(0.068)	(0.066)
Labor Productivity	-0.318	0.049	0.269
	(0.385)	(0.148)	(0.284)
Obs.	722	722	722
R2	0.54	0.40	0.43

for each skill h, CZ c, occupation/task group k between 1980 and 2010.

Note: 722 CZs, 1980-2010. Standard errors (in parentheses) are clustered at the state level. ******, *****, **+** indicate significance at 1-percent, 5-percent and 10-percent level, respectively.

33 / 33

Computerization & Immigration

1950-1980 migration and 1980-2010 PCs adoption

 $\frac{\Delta Pop_{c,h,t}}{Pop_{c,1950}} = \alpha + \beta \Delta PC \text{ use}_{c,1980-2010} + \gamma \Delta Labor \text{ Productivity}_{c,1980-2010} + \phi_s + \Delta \varepsilon_{s,h,h}^k$ (6)

for each skill h, CZ c, occupation/task group k between 1950 and 1980.

Back 🗇 🖌 🖉 🕨 🛪 🖹 🕨 🖉 🖿

э

1950-1980 migration and 1980-2010 PCs adoption

$$\frac{\Delta Pop_{c,h,t}}{Pop_{c,1950}} = \alpha + \beta \Delta PC \text{ use}_{c,1980-2010} + \gamma \Delta Labor \text{ Productivity}_{c,1980-2010} + \phi_s + \Delta \varepsilon_{s,h,s}^k$$
(6)

for each skill h, CZ c, occupation/task group k between 1950 and 1980.

	Low Skilled	High Skilled			
Panel A: Natives					
PC use	4.565	3.321			
	(4.946)	(3.789)			
Labor Productivity	-4.648	-3.541			
	(8.080)	(7.774)			
Obs.	722	722			
R2	0.48	0.51			
Panel B: Foreign Born					
PC use	0.458	0.426			
	(0.761)	(0.386)			
Labor Productivity	-0.385	-0.479			
	(1.125)	(0.766)			
Obs.	722	722			
R2	0.52	0.54			

Note: 722 CZs, 1950-1980. Standard errors (in parentheses) are clustered at the state level. **, *, + indicate

significance at 1-percent, 5-percent and 10-percent level, respectively.

33 / 33

Computerization & Immigration

ъ

 $\Delta \log(w)_{c,t}^{k} = \alpha + \beta \Delta PC \text{ use}_{c,t} + \gamma \Delta \text{Labor Productivity}_{c,t} + \phi_s + \Delta \varepsilon_{s,t}^{k} \quad (7)$ for each skill *h*, CZ *c*, occupation/task group *k* between 1980 and 2010.

$$\Delta \log(w)_{c,t}^{k} = \alpha + \beta \Delta \mathsf{PC} \text{ use}_{c,t} + \gamma \Delta \mathsf{Labor Productivity}_{c,t} + \phi_s + \Delta \varepsilon_{s,t}^{k} \quad (7)$$

for each skill h, CZ c, occupation/task group k between 1980 and 2010.

	Manag/Prof Occ	Cler/Ret/Prod Occ	Serv/Trans Occ
PC use	0.046**	-0.045**	0.006
	(0.004)	(0.006)	(0.005)
Labor Productivity	-0.000	0.031^{+}	-0.002
	(0.012)	(0.018)	(0.016)
Obs.	722	722	722
R2	0.66	0.73	0.46

Note: 722 CZs, 1980-2010. Standard errors (in parentheses) are clustered at the state level. ******, *****, **+** indicate significance at 1-percent, 5-percent and 10-percent level, respectively.

- **→** → **→**

Skilled migration: Employment

Routine and Analytical Employment w/out and w/Skilled Migration

Back

< 日 > < 同 > < 三 > < 三 >