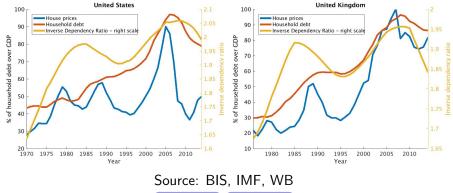
	The Model		Conclusions
Looking bel		l cycle: the neglec raphics	ted role of

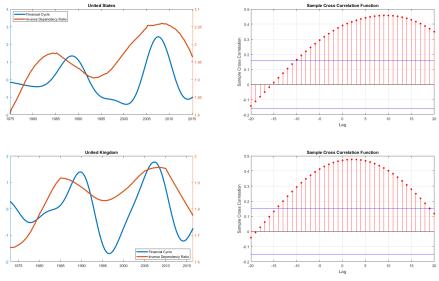

Alessandro Ferrari

5th Annual conference Secular Stagnation and Financial Cycles 28th September 2017

	The Model	Conclusions
D: L:		
Disclaimer		

The views expressed in this article are solely the responsibility of the author and should not be interpreted as reflecting the views of the Eurosystem or the Banca d'Italia.

Introduction	The Model	Simulation	Conclusions
Inverse	dependency ratio,	households debt and	housing
prices			



Correlogram US Correlogram UK

Introduction	The Model	Conclusions
Motivation		

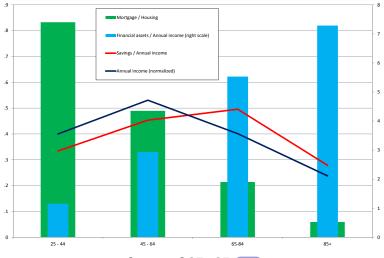
- Household debt and housing price cycles are correlated with dependency ratio (Nishimura, 2011 & 2013)
 - Housing prices are driven by population dimension and demographic structure (Saita et al. (2013))
 - Correlation between private debt, mortgages and housing (land) prices (Piazzesi and Schneider, 2016; Knoll et al., 2017)
- Fertility in the 20th century has been characterized by booms and busts (Geanakoplos, 2004; Jones and Schoonbrodt, 2016) (Figure)

Financial and "demographic cycle"

Source: author's elaboration of Borio et al. (2012)

Introduction	The Model	Conclusions
This paper		

Research question

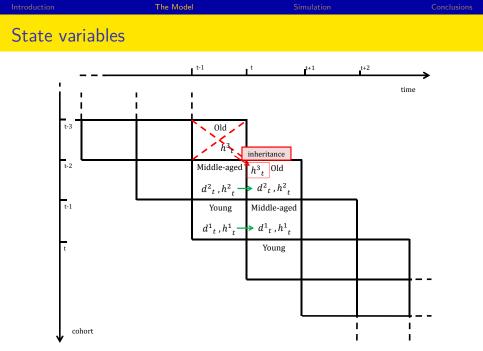

Can the demographic cycle explain the financial cycle?

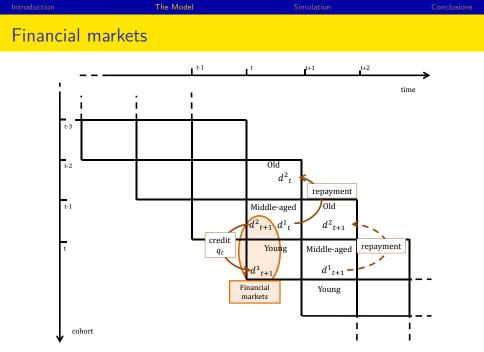
- Construct an OLG model with debt, housing and exogenous demographic shocks
- Study the effect of a transitory baby-boom on agents choices of consumption and savings
- Effects on the income life-cycle and relative-dimension of supply and demand of the credit market trigger financial cycle: credit-to-GDP and house prices co-moves with inverse dependency ratio

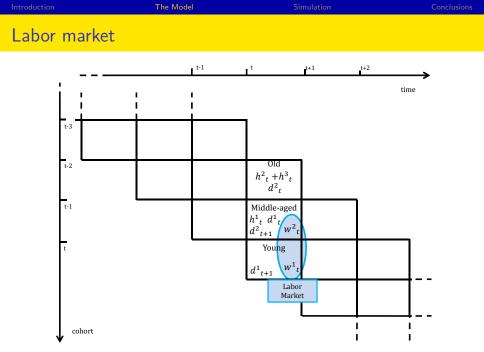
- The role of demographic structure on financial markets: Favero et al. (2015), Carvalho et al. (2016), Gagnon et al. (2016)
- Debt super-cycle: Rogoff (2015), Borio (2017)
- This paper studies the role of demographics factors on the financial cycle

- Households face a life-cycle profile of income: they are more productive and earn more in later stages of lifes
- Income profile and tastes determine a life-cycle profile also for savings and wealth
- A change in population structure affects the demand and the supply of credit and housing (non-durable good): keeping individual preferences unchanged in general equilibrium has an effect on prices.

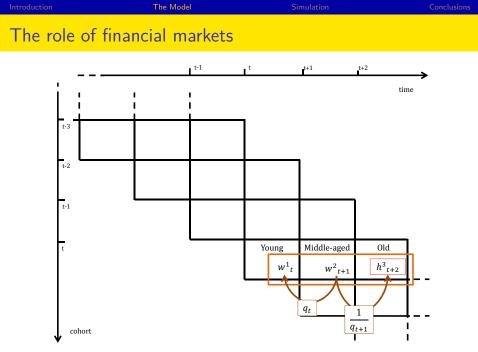
Stylized facts on life-cycle profiles (US 2013)

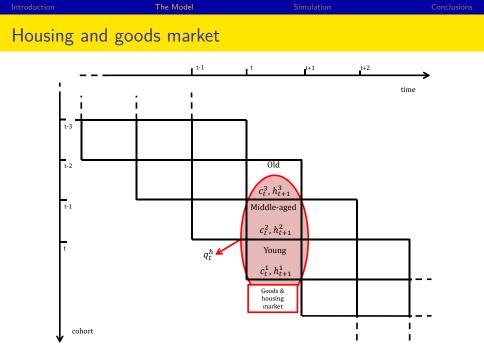

Source: SCF, CE Italy


Introduction	The Model	Simulation	Conclusions
The Model			

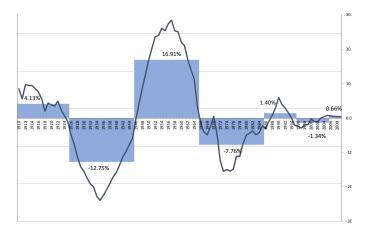

- OLG: agents live three periods and then die with certainty
- In the first two periods supply labor and earn labor income
- In any period they consume housing and consumption good
- Housing is in fixed supply
- The first and the second cohort participates to financial markets
- Solution: third order perturbation

More on preferences


Introduction		The Model Sir		Simulation		Conclusions	
Begin	ning of pe	riod t					
			t-1	ľ	t+1	t+2	\rightarrow
	i :	1	1			ti	me
	t-3	1	Old]			
	t-2		$h^{3}t$		7		
	t-2		Middle-aged d_t^2 , h_t^2				
	t-1		Young			7	
			$d^1{}_t$, $h^1{}_t$				-
	t						
							+
							ļ
	cohort					I I	1



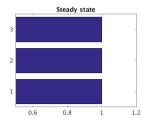
The Model Life-time "income" t-1 t. t+1 t+2 time t-3 t-2 Old $h_{t}^{2} + h_{t}^{3}$ t-1 Middle-aged $h^1_t w^2_t$ Young Life-time «income» w^1_t w_{t+1}^{2} h^{3}_{t+2} cohort

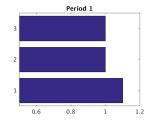

Calibration: crucial elements

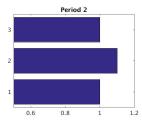
- Agents get the highest level of labor income when they are middle-aged, i.e. w¹ < w² (consistent with empirical data)
- The discount factors are calibrated to match life-cycle profile of consumption and savings $(\beta_1 > \beta_2)$

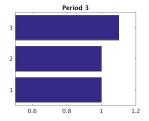
Calibrated profiles of consumption, housing and debt

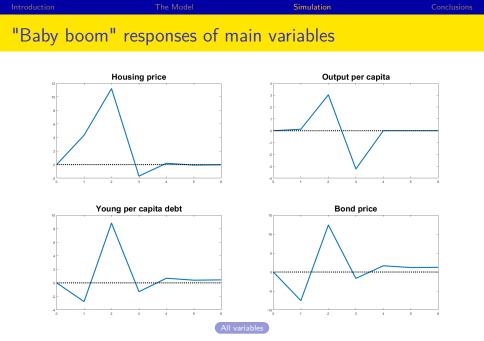
• The cross-elasticity of substitution between housing and consumption is less than 1 (0.50 in line with Borri and Reichlin (2016))

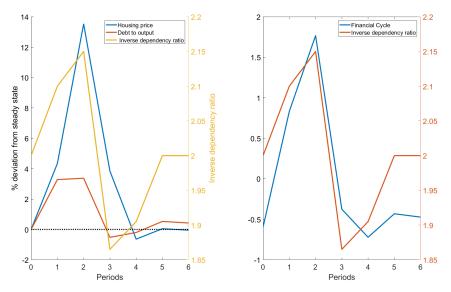

Demographic booms and busts

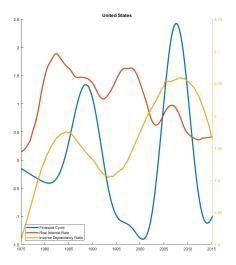


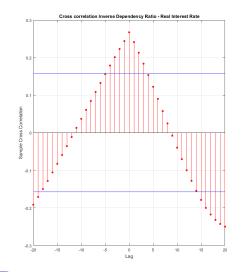

Detrended fertility rate adjusted for child mortality



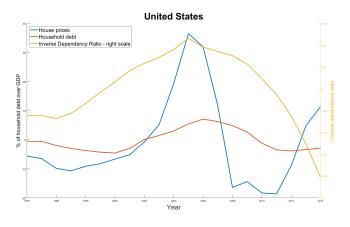

	The Model	Simulation	Conclusions
A transitory "	baby boom":	population pyramids	

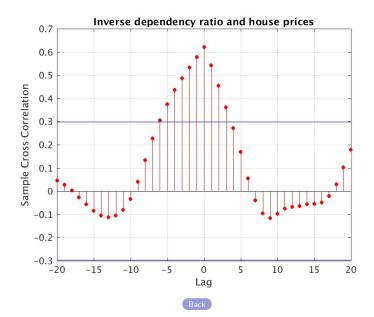


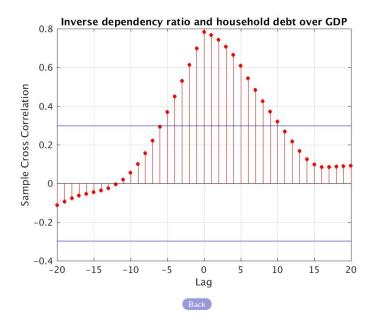


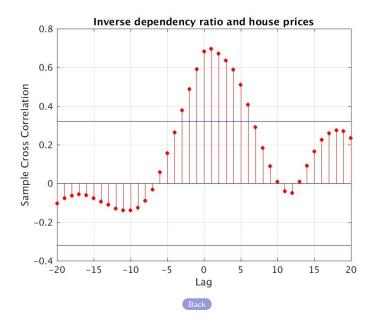


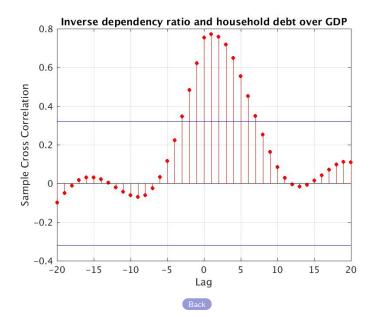
- Co-movement between housing and demographics determined by complementarity between consumption and housing goods
- Baby boomers enters the model:
 - Negative wealth effect on the first cohort, positive wealth effect on second and third cohort Figure
 - Reduces consumption smoothing desire of the young Figure, reduces saving needs of the middle aged
 - Together with different relative size the second effect prevails and the interest rate rise (+ "sort of" no-arbitrage with housing)
- Baby boomers become middle aged: increase in credit supply and negative expectations on house prices leads to a decrease in the interest rate, the newborn are richer and takes more credit
 - The debt-to-GDP increases while the interest rate decreases \Longrightarrow demographic cycle (not financial cycle)


The effect on interest rate - US

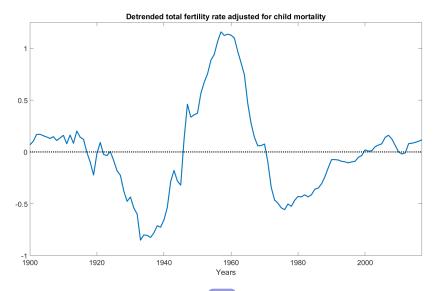


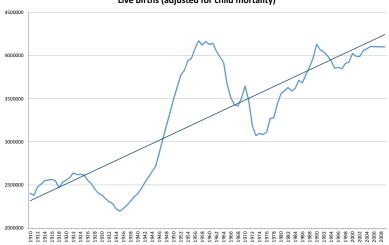

	The Model	Conclusions
Conclusions		


- In a OLG model with individual life-cycle and housing a demographic shock determines the financial cycle
- Medium frequency cycle that will revert in the near future
- Financial cycle vs secular stagnation:
 - "Financial cycle" is related to structural factors but...
 - Structural factors are cyclical (at the medium frequencies)!
- Future research agenda:
 - OLG as in Gertler (1999): higher frequency \implies empirical estimation
 - Rational bubbles triggered from demographic shocks?

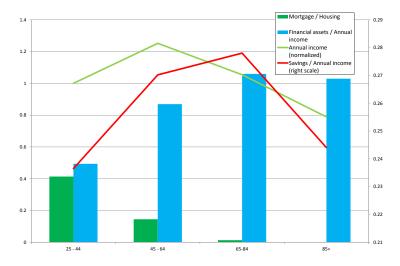


Back

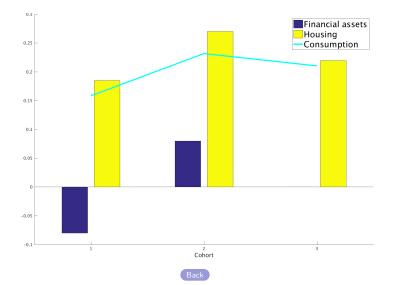




Demographic medium-frequency cycle


Live births

Live births (adjusted for child mortality)



Stylized facts on life-cycle profiles (Italy 2014)

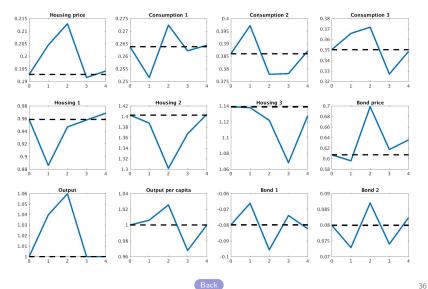
Calibration of income, credit, and housing

Households' problem

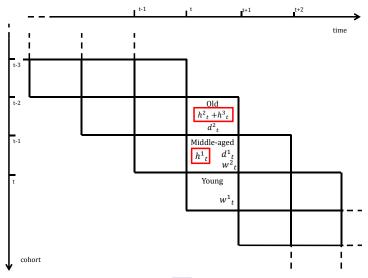
• The intra-period utility of cohort *i* is given by $u^i(c_t^i, h_{t+1}^i) \equiv U^i(g(c_t, h_{t+1}))$ where:

$$g\left(h_{t+1},c_{t}\right) = \left[\left(1-\omega^{h}\right)\left(c_{t}\right)^{\frac{\eta-1}{\eta}} + \omega^{h}\left(h_{t+1}\right)^{\frac{\eta-1}{\eta}}\right]^{\frac{\eta}{\eta-1}}$$

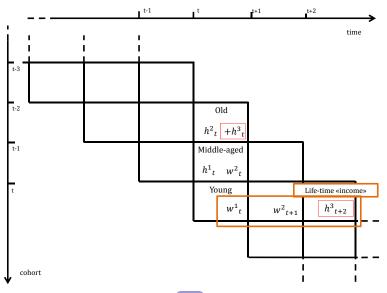
And:

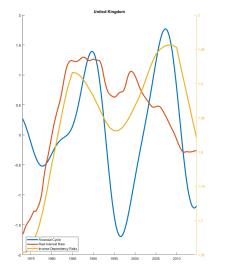

$$U^{i}(x) = \frac{x^{1-\sigma}}{1-\sigma}$$

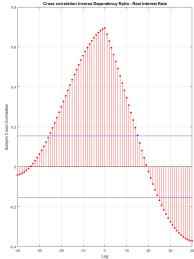
• The intra-period budget constraint is:


$$c_t^i + q_t^h \left(h_{t+1}^i - h_t^{i-1}
ight) + q_t^b d_{t+1}^i \leq w_t^i + d_t^{i-1}$$

Back


Individual responses


Cohort's wealth



Life-time "income"

The effect on interest rate - UK

