Low frequency drivers of the real interest rate A band-spectrum regression approach

by Fabio Busetti and Michele Caivano

Banca d'Italia

28 September 2017

Fabio Busetti (Banca d'Italia)

Overview of the paper

Figure 1: Real interest rate in advanced economies

イロト イヨト イヨト イヨト

• We assess the relative importance of the **underlying drivers of the real interest rate** in advanced economies over the 1980-2014 period.

メロト メポト メヨト メヨ

- We assess the relative importance of the **underlying drivers of the real interest rate** in advanced economies over the 1980-2014 period.
- The focus is on the low frequency (longer-term) fluctuations of the real rate, using **band-spectrum regressions** (Engle, 1974). Novel approach for this issue. Spectral regressions are pooled across countries.

< ロ > < 同 > < 三 > < 三

- We assess the relative importance of the **underlying drivers of the real interest rate** in advanced economies over the 1980-2014 period.
- The focus is on the low frequency (longer-term) fluctuations of the real rate, using **band-spectrum regressions** (Engle, 1974). Novel approach for this issue. Spectral regressions are pooled across countries.
- Connections with the literature on estimation of the natural rate of interest; e.g. Laubach and Williams (2003), Lubik and Matthes (2015), Hamilton, Harris, Hatzius and West (2016), Holston, Laubach and Williams (2017) + structural macroeconomic models

イロト イヨト イヨト イヨト

- We assess the relative importance of the **underlying drivers of the real interest rate** in advanced economies over the 1980-2014 period.
- The focus is on the low frequency (longer-term) fluctuations of the real rate, using **band-spectrum regressions** (Engle, 1974). Novel approach for this issue. Spectral regressions are pooled across countries.
- Connections with the literature on estimation of the natural rate of interest; e.g. Laubach and Williams (2003), Lubik and Matthes (2015), Hamilton, Harris, Hatzius and West (2016), Holston, Laubach and Williams (2017) + structural macroeconomic models
- Main finding: long-term movements of the real interest rate mainly reflect **productivity and demographic developments**.

<ロ> (日) (日) (日) (日) (日)

(A) In a standard Solow growth model the **equilibrium** real rate is $r^* = \alpha \frac{n+g+\delta}{s}$

- Demographics (*n*, *s*)
- Technological change, human capital (g)
- Change in preferences (s)
- Inequality (s)

 $\Rightarrow\,$ Both supply and demand conditions. Debate on secular stagnation: e.g. Summers (2014), Gordon (2015)

<ロト <回ト < 回ト < 回ト

(A) In a standard Solow growth model the **equilibrium** real rate is $r^* = \alpha \frac{n+g+\delta}{s}$

- Demographics (*n*, *s*)
- Technological change, human capital (g)
- Change in preferences (s)
- Inequality (s)

 $\Rightarrow\,$ Both supply and demand conditions. Literature on secular stagnation: e.g. Summers (2014), Gordon (2015)

(B) Some have also emphasized a **disequilibrium** explanation. Over-accomodating monetary policies may have induced a downwards bias in interest rates e.g. Borio (2014), Juselius et al. (2016)

・ロン ・四 と ・ ヨ と ・ ヨ と …

		Average	
	1980-1989	1990-1999	2000-2015
Working age population (% change)	0.88	0.63	0.36
Old age dependency ratio $(\%)$	18.9	21.6	26.1
Total Factor Productivity (% change)	1.3	0.9	0.5
Human capital per person (% change)	0.74	0.62	0.46
Credit to GDP ratio	103.8	124.5	152.9
Income distribution (Gini index)	29.3	31.4	32.0

Table 1: Drivers of the real interest rate drivers: average values in advanced economies

メロト メタト メヨト メヨ

Hannan (1963), Engle (1974), Harvey (1978). Basic intuition: in a standard time series regression we explain the variability of y through the covariates X. The variance is just the integral of the spectrum of y (stationary). Can focus on a region of that integral.

< □ > < 同 > < 回 > < Ξ > < Ξ

- Hannan (1963), Engle (1974), Harvey (1978). Basic intuition: in a standard time series regression we explain the variability of y through the covariates X. The variance is just the integral of the spectrum of y (stationary). Can focus on a region of that integral.
- How? Transform time-domain data in the frequency-domain using the finite Fourier transform. Perform OLS regression on transformed data. Specifically, for the linear model $y = X\beta + \varepsilon$ (with $\varepsilon \sim N(0, \sigma^2 I)$), pre-multiply the observations by an orthogonal, complex-valued $T \times T$ matrix W, with

イロト イ団ト イヨト イヨト

- Hannan (1963), Engle (1974), Harvey (1978). Basic intuition: in a standard time series regression we explain the variability of y through the covariates X. The variance is just the integral of the spectrum of y (stationary). Can focus on a region of that integral.
- How? Transform time-domain data in the frequency-domain using the finite Fourier transform. Perform OLS regression on transformed data. Specifically, for the linear model $y = X\beta + \varepsilon$ (with $\varepsilon \sim N(0, \sigma^2 I)$), pre-multiply the observations by an orthogonal, complex-valued $T \times T$ matrix W, with

$$[W]_{jt} = (1/\sqrt{T}) \exp\left(it\lambda_j\right) \tag{1}$$

イロト イ団ト イヨト イヨト

- Hannan (1963), Engle (1974), Harvey (1978). Basic intuition: in a standard time series regression we explain the variability of y through the covariates X. The variance is just the integral of the spectrum of y (stationary). Can focus on a region of that integral.
- How? Transform time-domain data in the frequency-domain using the finite Fourier transform. Perform OLS regression on transformed data. Specifically, for the linear model $y = X\beta + \varepsilon$ (with $\varepsilon \sim N(0, \sigma^2 I)$), pre-multiply the observations by an orthogonal, complex-valued $T \times T$ matrix W, with

$$[W]_{jt} = (1/\sqrt{T}) \exp\left(it\lambda_j\right) \tag{1}$$

<ロ> (日) (日) (日) (日) (日)

• The transformed observations $\tilde{y} = Wy$, $\tilde{X} = WX$ are in the frequency domain. Note: β unaffected by W and, being W orthogonal, $\tilde{\varepsilon} = W\varepsilon \sim N(0, \sigma^2 I)$.

۲

- Hannan (1963), Engle (1974), Harvey (1978). Basic intuition: in a standard time series regression we explain the variability of y through the covariates X. The variance is just the integral of the spectrum of y (stationary). Can focus on a region of that integral.
- How? Transform time-domain data in the frequency-domain using the finite Fourier transform. Perform OLS regression on transformed data. Specifically, for the linear model $y = X\beta + \varepsilon$ (with $\varepsilon \sim N(0, \sigma^2 I)$), pre-multiply the observations by an orthogonal, complex-valued $T \times T$ matrix W, with

$$[W]_{jt} = (1/\sqrt{T}) \exp\left(it\lambda_j\right) \tag{1}$$

<ロ> (日) (日) (日) (日) (日)

• The transformed observations $\tilde{y} = Wy$, $\tilde{X} = WX$ are in the frequency domain. Note: β unaffected by W and, being W orthogonal, $\tilde{\varepsilon} = W\varepsilon \sim N(0, \sigma^2 I)$.

• We select frequency bands by just deleting rows from \widetilde{y} and \widetilde{X}

- Hannan (1963), Engle (1974), Harvey (1978). Basic intuition: in a standard time series regression we explain the variability of y through the covariates X. The variance is just the integral of the spectrum of y (stationary). Can focus on a region of that integral.
- How? Transform time-domain data in the frequency-domain using the finite Fourier transform. Perform OLS regression on transformed data. Specifically, for the linear model $y = X\beta + \varepsilon$ (with $\varepsilon \sim N(0, \sigma^2 I)$), pre-multiply the observations by an orthogonal, complex-valued $T \times T$ matrix W, with

$$[W]_{jt} = (1/\sqrt{T}) \exp\left(it\lambda_j\right) \tag{1}$$

• The transformed observations $\tilde{y} = Wy$, $\tilde{X} = WX$ are in the frequency domain. Note: β unaffected by W and, being W orthogonal, $\tilde{\varepsilon} = W\varepsilon \sim N(0, \sigma^2 I)$.

- We select frequency bands by just deleting rows from \widetilde{y} and \widetilde{X}
- Serial correlation in ε is mapped into heteroschedasticity in ε̃ → use robust standard errors.

The estimated model: pooled band spectrum regression

• $y = X\beta + \varepsilon$, where y is $NT \times 1$ and X is $NT \times k$. N countries stack one after. Same coefficients β across countries.

()

- $y = X\beta + \varepsilon$, where y is $NT \times 1$ and X is $NT \times k$. N countries stack one after. Same coefficients β across countries.
- y: real interest rate -> nominal 3-months interbank rate minus a measure of inflation expectations (computed by an AR model).

(日) (同) (三) (三) (三)

- $y = X\beta + \varepsilon$, where y is $NT \times 1$ and X is $NT \times k$. N countries stack one after. Same coefficients β across countries.
- y: real interest rate -> nominal 3-months interbank rate minus a measure of inflation expectations (computed by an AR model).
- X include: TFP, Working-age population, Old age dependency ratio, Credit-to-GDP gap, Inequality (Gini).

< □ > < 同 > < 回 > < Ξ > < Ξ

- $y = X\beta + \varepsilon$, where y is $NT \times 1$ and X is $NT \times k$. N countries stack one after. Same coefficients β across countries.
- y: real interest rate -> nominal 3-months interbank rate minus a measure of inflation expectations (computed by an AR model).
- X include: TFP, Working-age population, Old age dependency ratio, Credit-to-GDP gap, Inequality (Gini).
- N countries: US, UK, Canada, Japan, Germany, France, Italy and Spain.

<ロト </p>

- $y = X\beta + \varepsilon$, where y is $NT \times 1$ and X is $NT \times k$. N countries stack one after. Same coefficients β across countries.
- y: real interest rate -> nominal 3-months interbank rate minus a measure of inflation expectations (computed by an AR model).
- X include: TFP, Working-age population, Old age dependency ratio, Credit-to-GDP gap, Inequality (Gini).
- N countries: US, UK, Canada, Japan, Germany, France, Italy and Spain.
- We consider two low frequency bands, implying periodicities $P \ge 7$ and $P \ge 15$ years respectively.

イロト イ団ト イヨト イヨト

- $y = X\beta + \varepsilon$, where y is $NT \times 1$ and X is $NT \times k$. N countries stack one after. Same coefficients β across countries.
- y: real interest rate -> nominal 3-months interbank rate minus a measure of inflation expectations (computed by an AR model).
- X include: TFP, Working-age population, Old age dependency ratio, Credit-to-GDP gap, Inequality (Gini).
- N countries: US, UK, Canada, Japan, Germany, France, Italy and Spain.
- We consider two low frequency bands, implying periodicities $P \ge 7$ and $P \ge 15$ years respectively.
- Both pooled regressions and fixed-effects estimation are performed on annual data for the 1980-2014 period. Pooling/FE estimation is important because loss of degrees of freedoms

<ロ> (日) (日) (日) (日) (日)

Results (benchmark specification)

• $y = \beta_1 \Delta t f p + \beta_2 \Delta a dr + \beta_3 \Delta w p o p + \beta_4 \Delta c y + \beta_5 I N.$

		Pooled		Fixed effects	
	Time domain	$P \ge 7$	$P \ge 15$	$P \ge 7$	$P \ge 15$
tfp	0.434***	0.828***	1.717***	0.984***	2.079***
age dependency	0.176	0.419*	0.997**	0.485*	1.268**
population 15-64	1.406***	2.010***	2.529**	1.453**	2.606**
credit-to-GDP	-0.016**	-0.015	-0.010	-0.013	-0.016
Gini index	-0.001	-0.042	-0.074	0.002	-0.095
R-square	0.13	0.15	0.41	0.22	0.51

Note: *=10%, **=5%, ***=1% significance

・ロト ・個ト ・ヨト ・ヨト

	Pooled			Fixed effects		
	<i>P</i> < 7	$P \ge 7$	$P \ge 15$	<i>P</i> < 7	$P \ge 7$	$P \ge 15$
tfp	0.21**	0.83***	1.72***	0.20**	0.98***	2.08***
age dependency	-1.54***	0.42*	1.00**	-1.10**	0.49*	1.27**
population 15-64	0.01	2.01***	2.53**	-0.04	1.45**	2.606**
credit-to-GDP	0.05**	-0.02	-0.01	0.02	-0.01	-0.02
Gini index	0.02	-0.04	-0.07	-0.03	0.00	-0.095
R-square	0.03	0.15	0.41	0.05	0.22	0.51

Note: *=10%, **=5%, ***=1% significance

▲□→ ▲圖→ ▲温→ ▲温→

Contributions to the R-square

Figure 2: Specific contributions to total R^2

Fabio E	Busetti (Banca	d'Italia)	
---------	-----------	-------	-----------	--

28/09/17 11 / 18

э

・ロト ・回ト ・ヨト ・

The natural rate of interest

Figure 3: Fitted values - periodicity larger than 15 years

Fabio Busetti (Banca d'Italia)

Low frequency drivers of the real rate

28/09/17 12 / 18

Comparison with Holston, Laubach and Williams (2017)

・ロト ・回ト ・ヨト ・

TFP or human capital?

-	Po	oled	Fixed effects			
	$P \ge 7$ $P \ge 15$		$P \ge 7$	$P \ge 15$		
tfp	0.64**	1.23***	0.75**	1.66***		
Human capital	7.01***	7.35***	6.58***	7.74***		
Age dependency	0.59**	1.11***	0.59**	1.20***		
Population 15-64	1.34**	1.90**	1.17*	1.97**		
Credit-to-GDP	-0.01	-0.00	-0.01	-0.01		
Gini index	-0.05	-0.07	-0.03	-0.12		
R-square	0.33	0.56	0.37	0.67		

Note: *=10%, **=5%, ***=1% significance

≣▶ ≣ ∽ি৭ে 28/09/17 14/18

イロト イヨト イヨト イヨト

• The longer term fluctuations of the real interest rates in major advanced economies over the past 35 years appear to be mainly driven by **productivity and demographics** developments.

メロト メポト メヨト メヨ

- The longer term fluctuations of the real interest rates in major advanced economies over the past 35 years appear to be mainly driven by **productivity and demographics** developments.
- Formal testing of different impacts across frequencies (business cycle vs longer run) can be performed through a Chow test.

<ロト </p>

- The longer term fluctuations of the real interest rates in major advanced economies over the past 35 years appear to be mainly driven by **productivity and demographics** developments.
- Formal testing of different impacts across frequencies (business cycle vs longer run) can be performed through a Chow test.
- Our estimates of the natural rate show a much smaller decline in the US and UK than in the Euro area and Japan

< □ > < 同 > < 回 > < Ξ > < Ξ

- The longer term fluctuations of the real interest rates in major advanced economies over the past 35 years appear to be mainly driven by **productivity and demographics** developments.
- Formal testing of different impacts across frequencies (business cycle vs longer run) can be performed through a Chow test.
- Our estimates of the natural rate show a much smaller decline in the US and UK than in the Euro area and Japan
- The model can be used to **project natural rates into the future** under plausible assumptions for demographic and TFP developments

Fitted data - periodicity > 15 years

Fabio Busetti (Banca d'Italia)

28/09/17 16 / 18

• Harvey (1978) suggests to work with a real countrpart of W, by defining the orthogonal, real-valued $T \times T$ matrix Z, with typical element:

$$z_{tj} = \begin{bmatrix} T^{-\frac{1}{2}} & \text{for } j = 1 \\ 2T^{-\frac{1}{2}} \cos\left[\frac{\pi j(t-1)}{T}\right] & \text{for } j > 1, j \text{ even} \\ 2T^{-\frac{1}{2}} \sin\left[\frac{\pi (j-1)(t-1)}{T}\right] & \text{for } j > 1, j \text{ odd} \\ T^{-\frac{1}{2}} (-1)^{t+1} & \text{for } j = T, T \text{ even} \end{bmatrix}$$

・ロト ・日下・ ・ ヨト・

• Harvey (1978) suggests to work with a real countrpart of W, by defining the orthogonal, real-valued $T \times T$ matrix Z, with typical element:

$$z_{tj} = \begin{bmatrix} T^{-\frac{1}{2}} & \text{for } j = 1\\ 2T^{-\frac{1}{2}} \cos\left[\frac{\pi j(t-1)}{T}\right] & \text{for } j > 1, j \text{ even} \\\\ 2T^{-\frac{1}{2}} \sin\left[\frac{\pi (j-1)(t-1)}{T}\right] & \text{for } j > 1, j \text{ odd} \\\\ T^{-\frac{1}{2}} (-1)^{t+1} & \text{for } j = T, T \text{ even} \end{bmatrix}$$

• Frequency domain data will be given by $y^* = Zy$ and $X^* = ZX$.

メロト メポト メヨト メヨ

• Harvey (1978) suggests to work with a real countrpart of W, by defining the orthogonal, real-valued $T \times T$ matrix Z, with typical element:

$$z_{tj} = \begin{bmatrix} T^{-\frac{1}{2}} & \text{for } j = 1 \\ 2T^{-\frac{1}{2}} \cos\left[\frac{\pi j(t-1)}{T}\right] & \text{for } j > 1, j \text{ even} \\ 2T^{-\frac{1}{2}} \sin\left[\frac{\pi (j-1)(t-1)}{T}\right] & \text{for } j > 1, j \text{ odd} \\ T^{-\frac{1}{2}} (-1)^{t+1} & \text{for } j = T, T \text{ even} \end{bmatrix}$$

• Frequency domain data will be given by $y^* = Zy$ and $X^* = ZX$.

• Frequency bands can be selected through an appropriate diagonal matrix A, filled with 1's on the diagonal entries corresponding to the included frequencies.

()

		Po	oled	Fixed effects		
	Time domain	$P \ge 7$	$P \ge 15$	$P \ge 7$	$P \ge 15$	
tfp	0.48***	0.93***	1.95***	1.12***	2.30***	
age dependency	0.12	0.38	1.03**	0.48*	1.37**	
population 15-64	1.59***	2.24***	2.80**	1.55**	2.88**	
credi-to-GDP	-0.020**	-0.018*	-0.012	-0.015	-0.017	
Gini index	0.00	-0.05	-0.09	0.002	-0.10	
R-square	0.16	0.14	0.42	0.24	0.51	

Note: *=10%, **=5%, ***=1% significance

・ロト ・回ト ・ヨト ・ヨト