Discussion of: Barigozzi-Lippi-Luciani - Dynamic Factor Models, Cointegration, and Error Correction Mechanisms

R. Mosconi
Politecnico di Milano
4th Carlo Giannini Conference
Pavia - March 24-25, 2014

General remarks

(1) Valuable contibution to the literature on dynamic factor models, accounting explicitly for non stationarity of the observed variables and of the factors

General remarks

(1) Valuable contibution to the literature on dynamic factor models, accounting explicitly for non stationarity of the observed variables and of the factors
(2) Interesting illustration showing the advantages of taking unit roots and cointegration into account wrt the common practice in the literature to develop DFM based on differenced variables.

General remarks

(1) Valuable contibution to the literature on dynamic factor models, accounting explicitly for non stationarity of the observed variables and of the factors
(2) Interesting illustration showing the advantages of taking unit roots and cointegration into account wrt the common practice in the literature to develop DFM based on differenced variables.
(3) Some suggestions for the model

General remarks

(1) Valuable contibution to the literature on dynamic factor models, accounting explicitly for non stationarity of the observed variables and of the factors
(2) Interesting illustration showing the advantages of taking unit roots and cointegration into account wrt the common practice in the literature to develop DFM based on differenced variables.
(3) Some suggestions for the model
(a) Some suggestions for the application

General remarks

(1) Valuable contibution to the literature on dynamic factor models, accounting explicitly for non stationarity of the observed variables and of the factors
(2) Interesting illustration showing the advantages of taking unit roots and cointegration into account wrt the common practice in the literature to develop DFM based on differenced variables.
(3) Some suggestions for the model
(9) Some suggestions for the application
(9) Few minor points, to be discussed separately with the authors

Proposed Model

- Proposed model:

$$
\begin{aligned}
x_{t} & =\Lambda F_{t}+\xi_{t} \\
\Delta F_{t} & =h+A^{*}(L) \Delta F_{t-1}+\alpha \beta^{\prime} F_{t-1}+C(0) u_{t}
\end{aligned}
$$

Proposed Model

- Proposed model:

$$
\begin{aligned}
x_{t} & =\Lambda F_{t}+\xi_{t} \\
\Delta F_{t} & =h+A^{*}(L) \Delta F_{t-1}+\alpha \beta^{\prime} F_{t-1}+C(0) u_{t}
\end{aligned}
$$

(1) $\underset{n \times 1}{x_{t}}$: observable variables

Proposed Model

- Proposed model:

$$
\begin{aligned}
x_{t} & =\Lambda F_{t}+\xi_{t} \\
\Delta F_{t} & =h+A^{*}(L) \Delta F_{t-1}+\alpha \beta^{\prime} F_{t-1}+C(0) u_{t}
\end{aligned}
$$

(1) x_{t} : observable variables
$n \times 1$
(2) $F_{t}: r<n$ unobservable factors, $\mathrm{I}(1)$, singular, cointegrated (rank $r \times 1$
$c=r-q+d)$

Proposed Model

- Proposed model:

$$
\begin{aligned}
x_{t} & =\Lambda F_{t}+\xi_{t} \\
\Delta F_{t} & =h+A^{*}(L) \Delta F_{t-1}+\alpha \beta^{\prime} F_{t-1}+C(0) u_{t}
\end{aligned}
$$

(1) x_{t} : observable variables $n \times 1$
(2) $F_{t}: r<n$ unobservable factors, $\mathrm{I}(1)$, singular, cointegrated (rank $r \times 1$
$c=r-q+d)$
(3) $u_{t}: q<r$ common shocks driving F_{t}, assumed iid, separated in τ $q \times 1$ permanent $v_{2 t}=\eta^{\prime} u_{t}$ (giving rise to common trends) and $d=(q-\tau)$ transitory $v_{1 t}=\eta_{\perp}^{\prime} u_{t}$

Proposed Model

- Proposed model:

$$
\begin{aligned}
x_{t} & =\Lambda F_{t}+\xi_{t} \\
\Delta F_{t} & =h+A^{*}(L) \Delta F_{t-1}+\alpha \beta^{\prime} F_{t-1}+C(0) u_{t}
\end{aligned}
$$

(1) x_{t} : observable variables $n \times 1$
(2) $F_{t}: r<n$ unobservable factors, $\mathrm{I}(1)$, singular, cointegrated (rank $r \times 1$
$c=r-q+d)$
(3) $u_{t}: q<r$ common shocks driving F_{t}, assumed iid, separated in τ $q \times 1$
permanent $v_{2 t}=\eta^{\prime} u_{t}$ (giving rise to common trends) and $d=(q-\tau)$ transitory $v_{1 t}=\eta_{\perp}^{\prime} u_{t}$
(1) ξ_{t} : observable idiosyncratic shocks, allowed to be $\mathrm{I}(0)$ or $\mathrm{I}(1)$, $n \times 1$ possibly autocorrelated, possibly cross correlated

Model developement 1

- Interpretation of the factors: the structural shocks $v_{1 t}$ and $v_{2 t}$ are interpreted thruogh SVAR-like restrictions, while the factors F_{t} are not. It would be interesting to interpret them, since the observed variables are affected by structural shocks through the factors. An interpretation of the factors would also allow for an interpretation of the cointegration vectors β, which might therefore be (over)-identified via suitable restrictions, gaining efficiency and insight

Model developement 1

- Interpretation of the factors: the structural shocks $v_{1 t}$ and $v_{2 t}$ are interpreted thruogh SVAR-like restrictions, while the factors F_{t} are not. It would be interesting to interpret them, since the observed variables are affected by structural shocks through the factors. An interpretation of the factors would also allow for an interpretation of the cointegration vectors β, which might therefore be (over)-identified via suitable restrictions, gaining efficiency and insight
- Let $\Lambda^{\prime}=\left[\lambda_{1}: \cdots: \lambda_{n}\right]$. It would be interesting to develop some tests on λ_{i}, for a better understanding of the role of the factors in determining the dynamics of observed variables $x_{i t}$. Examples:

Model developement 1

- Interpretation of the factors: the structural shocks $v_{1 t}$ and $v_{2 t}$ are interpreted thruogh SVAR-like restrictions, while the factors F_{t} are not. It would be interesting to interpret them, since the observed variables are affected by structural shocks through the factors. An interpretation of the factors would also allow for an interpretation of the cointegration vectors β, which might therefore be (over)-identified via suitable restrictions, gaining efficiency and insight
- Let $\Lambda^{\prime}=\left[\lambda_{1}: \cdots: \lambda_{n}\right]$. It would be interesting to develop some tests on λ_{i}, for a better understanding of the role of the factors in determining the dynamics of observed variables $x_{i t}$. Examples:
(1) $H_{0 A}(i): \lambda_{i}=0$ (meaning: the i-th variable is not affected by the factors, and therefore by any of the structural shocks)

Model developement 1

- Interpretation of the factors: the structural shocks $v_{1 t}$ and $v_{2 t}$ are interpreted thruogh SVAR-like restrictions, while the factors F_{t} are not. It would be interesting to interpret them, since the observed variables are affected by structural shocks through the factors. An interpretation of the factors would also allow for an interpretation of the cointegration vectors β, which might therefore be (over)-identified via suitable restrictions, gaining efficiency and insight
- Let $\Lambda^{\prime}=\left[\lambda_{1}: \cdots: \lambda_{n}\right]$. It would be interesting to develop some tests on λ_{i}, for a better understanding of the role of the factors in determining the dynamics of observed variables $x_{i t}$. Examples:
(1) $H_{0 A}(i): \lambda_{i}=0$ (meaning: the i-th variable is not affected by the factors, and therefore by any of the structural shocks)
(2) $H_{0 B}(i): \lambda_{i} \subseteq S p(\beta) \quad$ (meaning: the i-th variable is affected only by stationary linear combinations of the factors, and therefore are not affected by the common trends)

Model developement 1

- Interpretation of the factors: the structural shocks $v_{1 t}$ and $v_{2 t}$ are interpreted thruogh SVAR-like restrictions, while the factors F_{t} are not. It would be interesting to interpret them, since the observed variables are affected by structural shocks through the factors. An interpretation of the factors would also allow for an interpretation of the cointegration vectors β, which might therefore be (over)-identified via suitable restrictions, gaining efficiency and insight
- Let $\Lambda^{\prime}=\left[\lambda_{1}: \cdots: \lambda_{n}\right]$. It would be interesting to develop some tests on λ_{i}, for a better understanding of the role of the factors in determining the dynamics of observed variables $x_{i t}$. Examples:
(1) $H_{0 A}(i): \lambda_{i}=0$ (meaning: the i-th variable is not affected by the factors, and therefore by any of the structural shocks)
(2) $H_{0 B}(i): \lambda_{i} \subseteq S p(\beta) \quad$ (meaning: the i-th variable is affected only by stationary linear combinations of the factors, and therefore are not affected by the common trends)
(3) $H_{0 C}(i, j): \lambda_{i j}=0$ (meaning: the i-th variable is not affected by the j-th factor)

Model developement 2

- Stationarity analysis of $\xi_{i t}$: If we reject $H_{0 A}(i)$ and $H_{0 B}(i)$, and $\xi_{i t}$ is stationary, then the long term behaviour of $x_{i t}$ depends only on common trends

Model developement 2

- Stationarity analysis of $\xi_{i t}$: If we reject $H_{0 A}(i)$ and $H_{0 B}(i)$, and $\xi_{i t}$ is stationary, then the long term behaviour of $x_{i t}$ depends only on common trends
- Measuring the relative relevance of $\xi_{i t}$ and $F_{1 t}, \cdots, F_{r t}$ (or possibly $\left.v_{11 t}, \cdots, v_{1 d t}, v_{21 t}, \cdots, v_{2(q-d) t}\right)$ in determining the dynamics of $x_{i t}$ (something like FEVD): I believe that a major difficulty comes from the fact that the ξ^{\prime} 's are allowed to be I(0) or I(1), autocorrelated or not, cross correlated or not.

Application

- US macro data, 1960Q3-2012Q4; $n=103$, number of factors $\hat{r}=7$, number of $\hat{q}=3, \hat{\tau}=1, \hat{c}=\hat{r}-\hat{q}+(\hat{q}-\hat{\tau})=6$

Application

- US macro data, 1960Q3-2012Q4; $n=103$, number of factors $\hat{r}=7$, number of $\hat{q}=3, \hat{\tau}=1, \hat{c}=\hat{r}-\hat{q}+(\hat{q}-\hat{\tau})=6$
- Detrending via OLS prior to the analysis may be very inefficient (even biased in small samples): would it be possible to introduce deterministic components as part of the model?

Application

- US macro data, 1960Q3-2012Q4; $n=103$, number of factors $\hat{r}=7$, number of $\hat{q}=3, \hat{\tau}=1, \hat{c}=\hat{r}-\hat{q}+(\hat{q}-\hat{\tau})=6$
- Detrending via OLS prior to the analysis may be very inefficient (even biased in small samples): would it be possible to introduce deterministic components as part of the model?
- The IR of consumer price index does not seem to converge to a constant: I(2)?

Application

- US macro data, 1960Q3-2012Q4; $n=103$, number of factors $\hat{r}=7$, number of $\hat{q}=3, \hat{\tau}=1, \hat{c}=\hat{r}-\hat{q}+(\hat{q}-\hat{\tau})=6$
- Detrending via OLS prior to the analysis may be very inefficient (even biased in small samples): would it be possible to introduce deterministic components as part of the model?
- The IR of consumer price index does not seem to converge to a constant: $\mathrm{I}(2)$?
- Are \hat{r} and \hat{q} in the benchmark model in differences based on a statistical analysis or they are fixed at 7 and 3?

Application

- US macro data, 1960Q3-2012Q4; $n=103$, number of factors $\hat{r}=7$, number of $\hat{q}=3, \hat{\tau}=1, \hat{c}=\hat{r}-\hat{q}+(\hat{q}-\hat{\tau})=6$
- Detrending via OLS prior to the analysis may be very inefficient (even biased in small samples): would it be possible to introduce deterministic components as part of the model?
- The IR of consumer price index does not seem to converge to a constant: $\mathrm{I}(2)$?
- Are \hat{r} and \hat{q} in the benchmark model in differences based on a statistical analysis or they are fixed at 7 and 3?
- Two different/alternative identification schemes are used (sign restrictions to identify the monetary shock, BQ long-run restrictions for the technology shock): it would be preferable to merge the two schemes by first separating the technology shock a la BQ, and then identify the 2 transitory shocks via sign-restrictions.

