Dynamic Factor Models Cointegration AND Error Correction Mechanisms

Matteo Barigozzi	Marco Lippi	Matteo Luciani
LSE	EIEF	ECARES

Conference in memory of Carlo Giannini Pavia 25 Marzo 2014

This talk

- Non-Stationary Dynamic Factor Models
- Macroeconomic data
- Impulse-response functions

→ Ξ → -+

< A

This talk

- Non-Stationary Dynamic Factor Models
- Macroeconomic data
- Impulse-response functions
 - **1** Representation results
 - **2** Information criterion
 - **3** Estimation of non-stationary factors

• Stationary Dynamic Factor Models (DFM)

Forni, Hallin, Lippi & Reichlin (2000); Stock & Watson (2005); Forni, Giannone, Lippi & Reichlin (2009)

• Cointegration, Error Correction Mechanisms (ECM)

Engle & Granger (1987); Johansen (1988, 1991); Stock & Watson (1988)

• Singular stochastic processes

Anderson & Deistler (2008a,b)

・ロト ・伺下 ・ヨト ・ヨ

Literature

• Factor models have become increasingly popular

Nowadays commonly used by policy institutions

They have proven **successful**

1 Forecasting

Stock & Watson (2002); Forni, Hallin, Lippi & Reichlin (2005); Giannone, Reichlin & Small (2008); D'Agostino & Giannone (2012)

2 Structural analysis

Giannone, Reichlin & Sala (2005); Forni, Giannone, Lippi & Reichlin (2009); Forni & Gambetti (2010); Barigozzi, Conti & Luciani (2013); Luciani (2013)

< □ > < 同 > < 回 > < 回 > < 回</p>

- Fluctuations in the economy, $\mathbf{x}_t \sim I(0)$, are due to:
 - **(1)** a few structural shocks, \mathbf{u}_t , orthogonal white noise
 - 2 several idiosyncratic shocks, $\boldsymbol{\xi}_t$, possibly weakly correlated

- Fluctuations in the economy, $\mathbf{x}_t \sim I(0)$, are due to:
 - **1** a few structural shocks, \mathbf{u}_t , orthogonal white noise
 - 2) several idiosyncratic shocks, ξ_t , possibly weakly correlated
 - 3 Generalized DFM

Forni, Hallin, Lippi & Reichlin (2000)

$$\mathbf{x}_{t} = \mathbf{\chi}_{t} + \mathbf{\xi}_{t}$$
$$\mathbf{x}_{t} = \mathbf{B}(L) \mathbf{u}_{t}$$
$$\mathbf{\chi}_{t} = \mathbf{B}(L) \mathbf{u}_{t}$$
$$\mathbf{x}_{t} = \mathbf{x}_{t} + \mathbf{x}_{t}$$

- Fluctuations in the economy, $\mathbf{x}_t \sim I(0)$, are due to:
 - **1** a few structural shocks, \mathbf{u}_t , orthogonal white noise
 - **2** several **idiosyncratic shocks**, $\boldsymbol{\xi}_t$, possibly weakly correlated
 - **3** Restricted Generalized DFM Forni, Giannone, Lippi & Reichlin (2009)

$$\mathbf{x}_t = \mathbf{\chi}_t + \mathbf{\xi}_t \ _{n imes 1} + \mathbf{x}_{n imes 1}$$
 $\mathbf{\chi}_t = \mathbf{\Lambda}_{n imes r} \mathbf{F}_t \mathbf{F}_t$

- 同下 - 三下 - 三日

- Fluctuations in the economy, $\mathbf{x}_t \sim I(0)$, are due to:
 - **1** a few structural shocks, \mathbf{u}_t , orthogonal white noise
 - **2** several **idiosyncratic shocks**, $\boldsymbol{\xi}_t$, possibly weakly correlated
 - **3** Restricted Generalized DFM Forni, Giannone, Lippi & Reichlin (2009)

$$\mathbf{x}_{t} = \mathbf{\chi}_{t} + \mathbf{\xi}_{t}$$
$$\mathbf{\chi}_{t} = \mathbf{\Lambda}_{n \times 1} \mathbf{F}_{t}$$
$$\mathbf{\chi}_{t} = \mathbf{\Lambda}_{n \times r} \mathbf{F}_{t}$$
$$\mathbf{F}_{t} = \mathbf{C}(L) \mathbf{u}_{t}$$
$$r \times 1$$

- Fluctuations in the economy, $\mathbf{x}_t \sim I(0)$, are due to:
 - **1** a few structural shocks, \mathbf{u}_t , orthogonal white noise
 - 2 several idiosyncratic shocks, ξ_t , possibly weakly correlated
 - **3** Restricted Generalized DFM Forni, Giannone, Lippi & Reichlin (2009)
 - $\mathbf{x}_{t} = \mathbf{\chi}_{t} + \mathbf{\xi}_{t}$ $\mathbf{\chi}_{t} = \mathbf{\Lambda}_{n \times r} \mathbf{F}_{t}$ $\mathbf{x}_{t} = \mathbf{\Gamma}_{n \times r} \mathbf{F}_{t}$ $\mathbf{F}_{t} = \mathbf{C}(L) \mathbf{u}_{t}$ $\mathbf{r}_{x \times 1} \mathbf{u}_{t}$

q < r

Giannone et al., 2005, Amengual & Watson, 2007, Forni & Gambetti, 2010, and Luciani, 2013 for the US, Barigozzi et al., 2013 for the Euro Area

・ロト < 同ト < 回ト < 回ト < 回ト

 $\mathbf{\Phi}(L) = \mathbf{\Lambda} \mathbf{C}(L)$

- Fluctuations in the economy, $\mathbf{x}_t \sim I(0)$, are due to:
 - **(1)** a few structural shocks, \mathbf{u}_t , orthogonal white noise
 - 2 several idiosyncratic shocks, $\boldsymbol{\xi}_t$, possibly weakly correlated
 - **3** Restricted Generalized DFM Forni, Giannone, Lippi & Reichlin (2009)
 - $\mathbf{x}_{t} = \mathbf{\chi}_{t} + \mathbf{\xi}_{t}$ $\mathbf{\chi}_{t} = \mathbf{\Lambda}_{n \times r} \mathbf{F}_{t}$ $\mathbf{x}_{t} = \mathbf{\Gamma}_{t} \mathbf{F}_{t}$ $\mathbf{F}_{t} = \mathbf{C}(L) \mathbf{u}_{t}$ $\mathbf{u}_{t \times 1} = \mathbf{u}_{r \times q} \mathbf{u}_{r \times 1}$

• When q < r

q < r

Giannone et al., 2005, Amengual & Watson, 2007, Forni & Gambetti, 2010, and Luciani, 2013 for the US, Barigozzi et al., 2013 for the Euro Area

・ロト < 同ト < 回ト < 回ト < 回ト

 $\mathbf{\Phi}(L) = \mathbf{\Lambda} \mathbf{C}(L)$

- Fluctuations in the economy, $\mathbf{x}_t \sim I(0)$, are due to:
 - **1** a few structural shocks, \mathbf{u}_t , orthogonal white noise
 - 2 several idiosyncratic shocks, $\boldsymbol{\xi}_t$, possibly weakly correlated
 - **3** Restricted Generalized DFM Forni, Giannone, Lippi & Reichlin (2009)
 - $\mathbf{x}_{t} = \mathbf{\chi}_{t} + \mathbf{\xi}_{t}$ $\mathbf{\chi}_{t} = \mathbf{\Lambda}_{n \times r} \mathbf{F}_{t}$ $\mathbf{\chi}_{t} = \mathbf{\Lambda}_{n \times r} \mathbf{F}_{t}$ $\mathbf{F}_{t} = \mathbf{C}(L) \mathbf{u}_{t}$ $r \times 1$

q < r

Giannone et al., 2005, Amengual & Watson, 2007, Forni & Gambetti, 2010, and Luciani, 2013 for the US, Barigozzi et al., 2013 for the Euro Area

・ロト < 同ト < 回ト < 回ト < 回ト

 $\mathbf{\Phi}(L) = \mathbf{\Lambda} \mathbf{C}(L)$

• When q < r generically exists

- Fluctuations in the economy, $\mathbf{x}_t \sim I(0)$, are due to:
 - **1** a few structural shocks, \mathbf{u}_t , orthogonal white noise
 - 2 several idiosyncratic shocks, ξ_t , possibly weakly correlated
 - **3** Restricted Generalized DFM Forni, Giannone, Lippi & Reichlin (2009)
 - $\mathbf{x}_{t} = \mathbf{\chi}_{t} + \mathbf{\xi}_{t}$ $\mathbf{\chi}_{t} = \mathbf{\Lambda}_{n \times 1} \mathbf{F}_{t}$ $\mathbf{\chi}_{t} = \mathbf{\Lambda}_{n \times r} \mathbf{F}_{t}$ $\mathbf{F}_{t} = \mathbf{C}(L) \mathbf{u}_{t}$ $r \times 1$

q < r

Giannone et al., 2005, Amengual & Watson, 2007, Forni & Gambetti, 2010, and Luciani, 2013 for the US, Barigozzi et al., 2013 for the Euro Area

・ロト < 同ト < 回ト < 回ト < 回ト

 $\mathbf{\Phi}(L) = \mathbf{\Lambda} \mathbf{C}(L)$

• When q < r generically exists a finite autoregressive representation Anderson & Deistler (2008a,b)

- Fluctuations in the economy, $\mathbf{x}_t \sim I(0)$, are due to:
 - **1** a few structural shocks, \mathbf{u}_t , orthogonal white noise
 - **2** several **idiosyncratic shocks**, $\boldsymbol{\xi}_t$, possibly weakly correlated
 - **3** Restricted Generalized DFM

Forni, Giannone, Lippi & Reichlin (2009)

$$\mathbf{x}_{t} = \mathbf{\chi}_{t} + \mathbf{\xi}_{t}$$
$$\mathbf{x}_{n \times 1} = \mathbf{\Lambda} \mathbf{F}_{t}$$
$$\mathbf{\chi}_{t} = \mathbf{\Lambda} \mathbf{F}_{t}$$
$$\mathbf{D}(L) \mathbf{F}_{t} = \mathbf{C}(0) \mathbf{u}_{t}$$
$$r \times r \xrightarrow{r \times 1} r \times q \xrightarrow{q \times 1}$$

q < r

Giannone et al., 2005, Amengual & Watson, 2007, Forni & Gambetti, 2010, and Luciani, 2013 for the US, Barigozzi et al., 2013 for the Euro Area

< □ > < 同 > < 回 > < 回 > < □ >

```
\mathbf{\Phi}(L) = \mathbf{\Lambda} \mathbf{C}(L)
```

• When q < r generically exists a finite autoregressive representation Anderson & Deistler (2008a,b)

▶ Example

- Fluctuations in the economy, $\mathbf{x}_t \sim I(0)$, are due to:
 - a few structural shocks, \mathbf{u}_t , orthogonal white noise
 - several idiosyncratic shocks, ξ_t , possibly weakly correlated
 - **Restricted Generalized DFM**

Forni, Giannone, Lippi & Reichlin (2009)

$$\mathbf{x}_{t} = \mathbf{\chi}_{t} + \mathbf{\xi}_{t}$$
$$\mathbf{x}_{n \times 1} = \mathbf{\Lambda} \mathbf{F}_{t}$$
$$\mathbf{\chi}_{t} = \mathbf{\Lambda} \mathbf{F}_{t}$$
$$\mathbf{D}(L) \mathbf{F}_{t} = \mathbf{C}(0) \mathbf{u}_{t}$$
$$r \times r \xrightarrow{r \times 1} \mathbf{r} \leq \mathbf{U}(0) \mathbf{u}_{t}$$

q < r

Giannone et al., 2005, Amengual & Watson, 2007. Forni & Gambetti, 2010, and Luciani, 2013 for the US, Barigozzi et al., 2013 for the Euro Area

《日》 《圖》 《日》 《日》 크네

```
\mathbf{\Phi}(L) = \mathbf{\Lambda} \mathbf{D}(L)^{-1} \mathbf{C}(0)
```

• When q < r generically exists a finite autoregressive representation Anderson & Deistler (2008a,b)

• So far, DFM in a stationary setting

Exceptions: Bai (2004); Bai & Ng (2004); Peña & Poncela (2004)

Other exceptions: Eickmeier (2009); Forni, Sala & Gambetti (2013)

・ 何 ト ・ 三 ト ・

• So far, DFM in a stationary setting

Exceptions: Bai (2004); Bai & Ng (2004); Peña & Poncela (2004)

Other exceptions: Eickmeier (2009); Forni, Sala & Gambetti (2013)

• When \mathbf{x}_t and \mathbf{F}_t are stationary

all common shocks have a **permanent effect** Is this plausible?

- 同下 - 三下 - 三日

• So far, DFM in a stationary setting

Exceptions: Bai (2004); Bai & Ng (2004); Peña & Poncela (2004)

Other exceptions: Eickmeier (2009); Forni, Sala & Gambetti (2013)

• When \mathbf{x}_t and \mathbf{F}_t are stationary

all common shocks have a **permanent effect** Is this plausible? NO in Macroeconomic theory

・ 何 ト ・ 三 ト ・

• So far, DFM in a stationary setting Exceptions: Bai (2004); Bai & Ng (2004); Peña & Poncela (2004)

Other exceptions: Eickmeier (2009); Forni, Sala & Gambetti (2013)

• When \mathbf{x}_t and \mathbf{F}_t are stationary

all common shocks have a **permanent effect**

Is this plausible? NO in Macroeconomic theory

- technology shocks
- monetary policy shocks

- 同下 - 三下 - 三日

• So far, DFM in a stationary setting Exceptions: Bai (2004); Bai & Ng (2004); Peña & Poncela (2004)

Other exceptions: Eickmeier (2009); Forni, Sala & Gambetti (2013)

• When \mathbf{x}_t and \mathbf{F}_t are stationary

all common shocks have a **permanent effect** Is this plausible? NO in Macroeconomic theory

- technology shocks
- monetary policy shocks

• When \mathbf{x}_t is non-stationary but $\boldsymbol{\xi}_t$ is stationary there are no idiosyncratic trends strong implications for cointegration of \mathbf{x}_t

・ロト ・伺下 ・ヨト ・ヨ

• Let
$$\mathbf{x}_t, \mathbf{F}_t, \boldsymbol{\xi}_t \sim I(1)$$

$$\Delta \mathbf{x}_t = \Delta \boldsymbol{\chi}_t + \Delta \boldsymbol{\xi}_t$$

$$\Delta \boldsymbol{\chi}_t = \mathbf{\Lambda} \Delta \mathbf{F}_t$$

$$\Delta \mathbf{F}_t = \mathbf{C}(L) \mathbf{u}_t$$

$$r \times 1 = \mathbf{C}(L) \mathbf{u}_t$$

A (10) + (10)

-

• Let
$$\mathbf{x}_t, \mathbf{F}_t, \boldsymbol{\xi}_t \sim I(1)$$

$$\Delta \mathbf{x}_t = \Delta \mathbf{\chi}_t + \Delta \boldsymbol{\xi}_t$$

$$\Delta \mathbf{\chi}_t = \mathbf{\Lambda} \Delta \mathbf{F}_t$$

$$\Delta \mathbf{F}_t = \mathbf{C}(L) \mathbf{u}_t$$

$$r \times 1 = \mathbf{C}(L) \mathbf{u}_t$$

 If all q shocks have permanent effects, the genericity argument is valid

글 돈 소 글

• Let
$$\mathbf{x}_t, \mathbf{F}_t, \boldsymbol{\xi}_t \sim I(1)$$

$$\Delta \mathbf{x}_t = \Delta \mathbf{\chi}_t + \Delta \mathbf{\xi}_t$$

$$\Delta \mathbf{\chi}_t = \mathbf{\Lambda} \Delta \mathbf{F}_t$$

$$\Delta \mathbf{F}_t = \mathbf{C}(L) \mathbf{u}_t$$

$$r \times q \xrightarrow{q \times 1}$$

If all q shocks have permanent effects, the genericity argument is valid
If there are only q - d common trends,

the genericity argument is problematic: $rk(\mathbf{C}(1)) = q - d$

- 同 ト - ヨ ト - - ヨ ト

The research questions

$$\Delta \mathbf{x}_t = \Delta \boldsymbol{\chi}_t + \Delta \boldsymbol{\xi}_t$$
$$\Delta \boldsymbol{\chi}_t = \mathbf{\Lambda} \Delta \mathbf{F}_t$$
$$\Delta \mathbf{F}_t = \mathbf{C}(L) \mathbf{u}_t$$

P

∃ ► 4.

The research questions

$$\Delta \mathbf{x}_t = \Delta \boldsymbol{\chi}_t + \Delta \boldsymbol{\xi}_t$$
$$\Delta \boldsymbol{\chi}_t = \mathbf{\Lambda} \Delta \mathbf{F}_t$$
$$\Delta \mathbf{F}_t = \mathbf{C}(L) \mathbf{u}_t$$

9 What is the correct autoregressive representation for $\Delta \mathbf{F}_t$?

- **2** How many common trends?
- **3** How to estimate the model?

Outline

• Representation Theory

1

∃ ► 4

Main assumptions

$$\Delta \mathbf{F}_t = \mathbf{C}(L) \mathbf{u}_t$$
$$_{r \times q} \mathbf{u}_{q \times 1}$$

• $\Delta \mathbf{F}_t$ is a rational reduced-rank family

3 k 4

Main assumptions

$$\Delta \mathbf{F}_t = \mathbf{C}(L) \mathbf{u}_t \\ _{r \times q} \mathbf{u}_{q \times 1}$$

- $\Delta \mathbf{F}_t$ is a rational reduced-rank family
- \bullet with cointegration rank c

$$\mathbf{C}(L) = \boldsymbol{\zeta}_{r \times c} \, \boldsymbol{\eta}'_{r \times q} + (1 - L) \mathbf{D}(L)$$

Theorem

For generic values of the parameters of $\mathbf{C}(L)$:

 $\Delta \mathbf{F}_t = \mathbf{C}(L)\mathbf{u}_t$

Main result

Granger Representation Th. for Singular Vectors

Theorem

For generic values of the parameters of $\mathbf{C}(L)$:

$$\Delta \mathbf{F}_t = \mathbf{C}(L)\mathbf{u}_t$$

$$\mathbf{A}(L)\Delta\mathbf{F}_t + \boldsymbol{\alpha}\boldsymbol{\beta}'\mathbf{F}_{t-1} = \mathbf{h} + \mathbf{C}(0)\mathbf{u}_t$$

- 同下 - 三下 - 三日

Main result

Granger Representation Th. for Singular Vectors

Theorem

For generic values of the parameters of $\mathbf{C}(L)$:

 $\Delta \mathbf{F}_t = \mathbf{C}(L)\mathbf{u}_t$

$$\mathbf{A}(L)\Delta\mathbf{F}_t + \boldsymbol{\alpha}\boldsymbol{\beta}'\mathbf{F}_{t-1} = \mathbf{h} + \mathbf{C}(0)\mathbf{u}_t$$

• $\mathbf{A}(L)$ is an $r \times r$ finite-degree polynomial matrices

Theorem

For generic values of the parameters of $\mathbf{C}(L)$:

$$\Delta \mathbf{F}_t = \mathbf{C}(L)\mathbf{u}_t$$

$$\mathbf{A}(L)\Delta\mathbf{F}_t + \boldsymbol{\alpha}\boldsymbol{\beta}'\mathbf{F}_{t-1} = \mathbf{h} + \mathbf{C}(0)\mathbf{u}_t$$

• $\mathbf{A}(L)$ is an $r \times r$ finite-degree polynomial matrices

• $\boldsymbol{\beta}$ is $r \times c$ with c = r - q + d

Theorem

For generic values of the parameters of $\mathbf{C}(L)$:

$$\Delta \mathbf{F}_t = \mathbf{C}(L)\mathbf{u}_t$$

$$\mathbf{A}(L)\Delta\mathbf{F}_t + \boldsymbol{\alpha}\boldsymbol{\beta}'\mathbf{F}_{t-1} = \mathbf{h} + \mathbf{C}(0)\mathbf{u}_t$$

• $\mathbf{A}(L)$ is an $r \times r$ finite-degree polynomial matrices

• $\boldsymbol{\beta}$ is $r \times c$ with c = r - q + d

Theorem

For generic values of the parameters of $\mathbf{C}(L)$:

$$\Delta \mathbf{F}_t = \mathbf{C}(L)\mathbf{u}_t$$

$$\mathbf{A}(L)\Delta\mathbf{F}_t + \boldsymbol{\alpha}\boldsymbol{\beta}'\mathbf{F}_{t-1} = \mathbf{h} + \mathbf{C}(0)\mathbf{u}_t$$

- $\mathbf{A}(L)$ is an $r \times r$ finite-degree polynomial matrices
- $\boldsymbol{\beta}$ is $r \times c$ with c = r q + d
 - d: transitory shocks

Theorem

For generic values of the parameters of $\mathbf{C}(L)$:

 $\Delta \mathbf{F}_t = \mathbf{C}(L)\mathbf{u}_t$

$$\mathbf{A}(L)\Delta\mathbf{F}_t + \boldsymbol{\alpha}\boldsymbol{\beta}'\mathbf{F}_{t-1} = \mathbf{h} + \mathbf{C}(0)\mathbf{u}_t$$

- $\mathbf{A}(L)$ is an $r \times r$ finite-degree polynomial matrices
- $\boldsymbol{\beta}$ is $r \times c$ with c = r q + d
 - d: transitory shocks
 - r q singularity

A (10) + (10)

Theorem

For generic values of the parameters of $\mathbf{C}(L)$:

 $\Delta \mathbf{F}_t = \mathbf{C}(L)\mathbf{u}_t$

$$\mathbf{A}(L)\Delta\mathbf{F}_t + \boldsymbol{\alpha}\boldsymbol{\beta}'\mathbf{F}_{t-1} = \mathbf{h} + \mathbf{C}(0)\mathbf{u}_t$$

- $\mathbf{A}(L)$ is an $r \times r$ finite-degree polynomial matrices
- $\boldsymbol{\beta}$ is $r \times c$ with c = r q + d
 - d: transitory shocks
 - as if r q transitory shocks had a zero loading

- 4 同 ト - 4 三 ト

Remarks

• Representation

$$\mathbf{A}(L)\Delta\mathbf{F}_t + \boldsymbol{\alpha}\boldsymbol{\beta}'\mathbf{F}_{t-1} = \mathbf{h} + \mathbf{C}(0)\mathbf{u}_t$$

is not unique

- **1** the number of error terms varies between d and r (q d),
- 2 the autoregressive polynomial is not unique

- 同下 - 三下 - 三日

Remarks

• Representation

$$\mathbf{A}(L)\Delta\mathbf{F}_t + \boldsymbol{\alpha}\boldsymbol{\beta}'\mathbf{F}_{t-1} = \mathbf{h} + \mathbf{C}(0)\mathbf{u}_t$$

is not unique

- **1** the number of error terms varies between d and r (q d),
- 2 the autoregressive polynomial is not unique

• empirically this is not a problem

- **1** choose the maximum value for c = r (q + d)
- **2** choose the lag of $\mathbf{A}(L)$ in a 'prudent' way

* 同 ト * ヨ ト * ヨ

• How many common trends?

イロト イボト イヨト イヨ

三日 のへの

Literature

- **1** In DFM literature
 - Panel tests (PANIC) Bai & Ng (2004)
 - Information criterion based on PCA of levels \mathbf{x}_t $_{\text{Bai}~(2004)}$
- **2** Classical methods
 - Use cointegration tests on estimated factors Stock & Watson (1988), Phillips & Ouliaris (1988), Johansen (1991)

・ 同・ ・ ヨ・・・

Literature

- **1** In DFM literature
 - Panel tests (PANIC) Bai & Ng (2004)
 - Information criterion based on PCA of levels \mathbf{x}_t $_{\text{Bai}\ (2004)}$
- **2** Classical methods
 - Use cointegration tests on estimated factors Stock & Watson (1988), Phillips & Ouliaris (1988), Johansen (1991)
- 3 Limitations
 - All the DFM procedures assume q = r
 - The criterion available assumes $\boldsymbol{\xi}_t$ stationary
 - The estimation error of factors will affects classical methods

・ロト ・ 一下・ ・ 日 ・

Determining the number of common trends

• $\Delta \chi_t = \mathbf{\Lambda} \mathbf{C}(L) \mathbf{u}_t$ imply:

$$\Sigma_{\Delta\chi}(\theta) = \mathbf{\Lambda} \mathbf{C}(e^{-i\theta}) \mathbf{C}'(e^{i\theta}) \mathbf{\Lambda}'$$

•
$$\mathbf{rk}(\mathbf{\Sigma}_{\Delta\chi}(0)) = q - d = \tau$$

•
$$\lim_{n\to\infty} \lambda_{j\Delta\chi}(0) = \infty, \ j = 1, \dots, \tau$$

$$\widehat{\tau} = \operatorname*{argmin}_{\tau \in [0, \tau_{\max}]} \left[\log \left(\sum_{j=\tau+1}^{n} \widehat{\lambda}_{j\Delta x}(0) \right) + kp(n, T) \right]$$

Hallin and Liška (2007)

三日 のへの

Simulation results

				$\xi_i \sim$	I(1)	$\xi_i \sim I(1), I(0)$		
Т	Ν	q	d	DGP 1	DGP 2	DGP 1	DGP 2	
100	50	2	1	97.3	95.7	93.0	93.9	
100	50	3	1	81.9	73.7	87.3	83.2	
100	50	3	2	89.6	83.5	92.5	87.8	
150	50	2	1	99.2	98.7	85.6	92.1	
150	50	3	1	96.7	92.2	97.4	96.8	
150	50	3	2	98.3	95.8	96.4	96.7	
100	100	2	1	98.1	98.0	96.4	97.8	
100	100	3	1	92.2	85.9	94.5	89.7	
100	100	3	2	93.9	88.7	95.9	91.6	
150	100	2	1	98.9	99.4	91.3	96.5	
150	100	3	1	99.3	97.4	98.3	98.9	
150	100	3	2	99.2	97.9	98.9	98.9	

Percentage of times we estimate τ correctly

∃ ► 4.

• How to estimate the factors?

三日 のへで

・ 同下 ・ ヨト ・ ヨ

Literature

- - consistent only under the assumption $\boldsymbol{\xi}_t \sim I(0)$
 - implies that all variables are cointegrated
 - an assumption that is not credible in macro-panels

・ 何 ト ・ 三 ト ・

Literature

- - consistent only under the assumption $\boldsymbol{\xi}_t \sim I(0)$
 - implies that all variables are cointegrated

example

- an assumption that is not credible in macro-panels
- **2** PCA on first differences $\Delta \mathbf{x}_t$, and cumulating (PANIC) Bai & Ng (2004)

$$\widehat{\mathbf{F}}_t = \sum_{t=1}^T \widehat{\Delta \mathbf{F}}_t$$

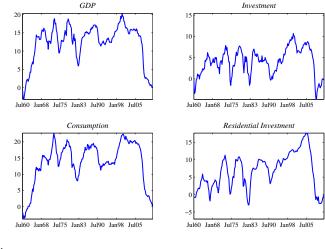
- $\widehat{\mathbf{F}}_T = \widehat{\boldsymbol{\chi}}_T = 0$ by construction
- The estimates $\widehat{\boldsymbol{\chi}}_t$ have finite sample problems

- 1 同 1 - 1 日 1 - 1 日

How to estimate the factors?

Literature

Estimation of χ_t with PANIC



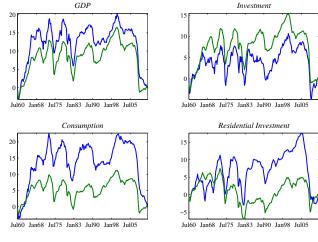
Blue: \mathbf{x}_t ;

18/32

How to estimate the factors?

Literature

Estimation of χ_t with PANIC



Blue: \mathbf{x}_t ; Green: $\widehat{\boldsymbol{\chi}}_t$

< □ > < 同 > < 回 > < 回 > < 回</p>

Estimating the space of common factors

- **4** Assume $\mathbf{x}_t \sim I(1)$ with no deterministic component
 - Estimate $\mathbf{\Lambda}$ by PCA on $\Delta \mathbf{x}_t$

•
$$\widehat{\mathbf{F}}_t = (\widehat{\mathbf{\Lambda}}'\widehat{\mathbf{\Lambda}})^{-1}\widehat{\mathbf{\Lambda}}'\mathbf{x}_t$$
 and $\widehat{\mathbf{\chi}}_t = \widehat{\mathbf{\Lambda}}\widehat{\mathbf{F}}_t$

Estimating the space of common factors

1 Assume $\mathbf{x}_t \sim I(1)$ with $x_{it} = a_i + b_i t + \lambda'_i \mathbf{F}_t + \xi_{it}$

- Detrend x_{it} and get x_{it}^*
- Estimate $\mathbf{\Lambda}$ by PCA on $\Delta \mathbf{x}_t$

•
$$\widehat{\mathbf{F}}_t = (\widehat{\mathbf{\Lambda}}'\widehat{\mathbf{\Lambda}})^{-1}\widehat{\mathbf{\Lambda}}'\mathbf{x}_t^*$$
 and $\widehat{\mathbf{\chi}}_t = \widehat{\mathbf{\Lambda}}\widehat{\mathbf{F}}_t$

- 同 ト - 日 ト - 4 日

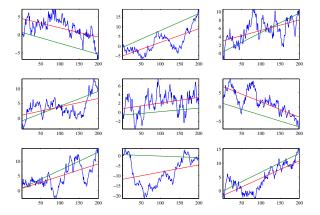
Estimating the space of common factors

9 Assume $\mathbf{x}_t \sim I(1)$ with $x_{it} = a_i + b_i t + \lambda'_i \mathbf{F}_t + \xi_{it}$

- Detrend x_{it} and get x_{it}^*
- Estimate $\mathbf{\Lambda}$ by PCA on $\Delta \mathbf{x}_t$
- $\widehat{\mathbf{F}}_t = (\widehat{\mathbf{\Lambda}}'\widehat{\mathbf{\Lambda}})^{-1}\widehat{\mathbf{\Lambda}}'\mathbf{x}_t^*$ and $\widehat{\mathbf{\chi}}_t = \widehat{\mathbf{\Lambda}}\widehat{\mathbf{F}}_t$
- **2** Comparison with PANIC

$$\widehat{\chi}_{it}^P - \widehat{\chi}_{it} = \lambda'_i \lambda_i \left(y_{i0} - a_i + \left(\frac{y_{iT} - y_{i0}}{T} - b_i \right) t \right)$$

Detrending vs. Demeaning

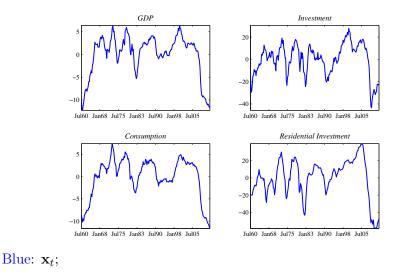


< 一型

How to estimate the factors?

An estimator of non-stationary factors

Estimation of χ_t with BLL



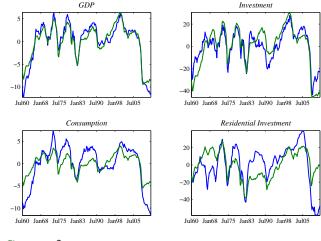
Matteo Barigozzi Factor Models and Cointegration

< 一型

How to estimate the factors?

An estimator of non-stationary factors

Estimation of χ_t with BLL



Blue: \mathbf{x}_t ; Green: $\widehat{\boldsymbol{\chi}}_t$

E >

Simulation results

				$\xi \sim I(0)$		$\xi_i \sim I(1), I(0)$		$\xi \sim I(1)$			
Т	Ν	q	d	Bai	BLL	Bai	BLL	Bai	BLL		
100	50	2	1	0.88	0.93	1.79	0.88	1.88	0.85		
100	50	3	1	0.95	0.99	1.36	0.92	1.48	0.88		
100	50	3	2	0.88	0.91	1.72	0.84	1.72	0.82		
150	50	2	1	0.86	0.93	2.08	0.91	2.27	0.86		
150	50	3	1	0.92	0.96	1.52	0.92	1.66	0.89		
150	50	3	2	0.86	0.91	2.19	0.88	2.08	0.83		
100	100	2	1	0.87	0.92	1.94	0.90	2.17	0.84		
100	100	3	1	0.92	0.95	1.43	0.91	1.58	0.87		
100	100	3	2	0.85	0.89	1.88	0.85	1.93	0.83		
150	100	2	1	0.86	0.93	2.31	0.93	2.65	0.84		
150	100	3	1	0.90	0.94	1.62	0.92	1.85	0.91		
150	100	3	2	0.87	0.92	2.43	0.85	2.44	0.83		
Average $R_i = \frac{\sum_{t=1}^{T} (\hat{\chi}_{it} - \chi_{it})^2}{\sum_{t=1}^{T} \chi_{it}^2}$ relative to PANIC											

三日 のへの

A (10) + (10)

• How to estimate the model?

三日 のへで

・ 同下 ・ ヨト ・ ヨ

Estimation: Summary

$$\mathbf{x}_{t} = \mathbf{A}\mathbf{F}_{t} + \boldsymbol{\xi}_{t}$$
$$\mathbf{A}^{*}(L)\mathbf{F}_{t} = \mathbf{A}(L)\Delta\mathbf{F}_{t} + \boldsymbol{\alpha}\boldsymbol{\beta}'\mathbf{F}_{t-1} = \mathbf{h} + \mathbf{C}(0)\mathbf{u}_{t}$$

• Impulse responses
$$\widehat{\Phi}(L) = \widehat{\Lambda}(\widehat{\mathbf{A}}^*(L))^{-1}\widehat{\mathbf{C}}(0)$$

• $c = r - \tau$

- VECM on $\widehat{\mathbf{F}}_t \Rightarrow$ residuals $\widehat{\mathbf{v}}_t$
- PCA on $\widehat{\mathbf{v}}_t \Rightarrow \widehat{\mathbf{C}}(0)$

三日 のへの

Outline

• Empirical Analysis

Matteo Barigozzi Factor Models and Cointegration

三日 のへの

→ Ξ > +

Data and number of shocks

- **9** Panel of US 103 quarterly series from 1960:Q3 to 2012:Q4
- **2** Number of common factors and shocks
 - r = 7
 - q = 3
 - $d = 2 \Rightarrow \tau = 1$
 - 1 permanent shock, 2 transitory shocks

Set-Up

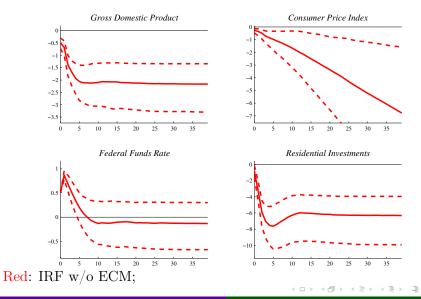
Data and number of shocks

- Panel of US 103 quarterly series from 1960:Q3 to 2012:Q4
- 2 Number of common factors and shocks
 - r = 7
 - q = 3
 - $d = 2 \Rightarrow \tau = 1$
 - 1 permanent shock, 2 transitory shocks
- Identification
 - Monetary Policy Shock Sign Restrictions Barigozzi, Conti & Luciani (2013)
 - Technology Shock Long-run Restrictions Blanchard & Quah (1992)

Empirical Analysis

Results

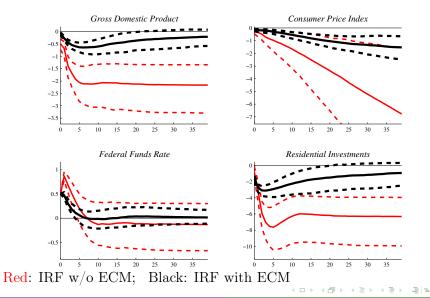
Monetary Policy Shock



Matteo Barigozzi Factor Models and Cointegration

Results

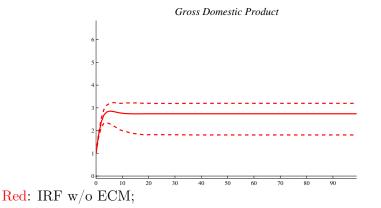
Monetary Policy Shock



Empirical Analysis

Results

Technology Shock - GDP

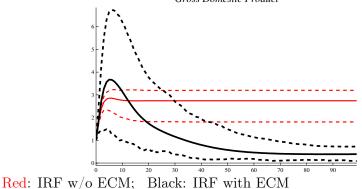


28/32

Empirical Analysis

Results

Technology Shock - GDP



Gross Domestic Product

• Detrended data

Dedola & Neri (2007); Smets & Wouters (2007)

E >

Technology Shock - Hours

• Hours worked

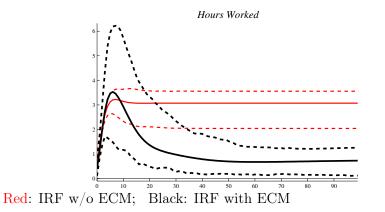
- What happens after a positive technology shock?
- Macroeconomic theory:
 - increase Real Business Cycle model
 - decrease New Keynesian model
- Empirical evidence:
 - decrease Galí (1999); Francis & Ramey (2005)
 - increase Christiano, Eichenbaum & Vigfusson (2003); Dedola & Neri (2007)

* 同 ト * ヨ ト * ヨ

Empirical Analysis

Results

Technology Shock - Hours



→ Ξ →

29/32

Summary

- Correct AR specification for $\Delta \mathbf{F}_t$
 - **1 VECM** representation

IRF consistent with macroeconomic theory

- **2** VAR representation
 - IRF not necessarily consistent
 - due to cumulation of IRF
 - unrealistically high and persistent

< A >

Conclusions

- Non-stationary Dynamic Factor models
- Representation results

Granger Representation Theorem for Singular I(1) Vectors

- Criterion for number of common trends
- Estimation of non-stationary common factors
- Estimation of impulse response functions
- Monetary policy shocks
- Technology shocks

Thank You !

<ロト < 回 ト < 回 ト < 回 ト < 回 ト 三 回 の Q ()</p>

• DGP 1:

$$\chi_{it} = \lambda'_i \mathbf{F}_t$$
$$\mathbf{F}_t = \mathbf{\Phi}(L) \mathbf{F}_{t-1} + \mathbf{G} \mathbf{u}_t$$

• DGP 2:

$$\chi_{it} = \boldsymbol{\lambda}'_{i;0}\mathbf{f}_t + \boldsymbol{\lambda}'_{i;1}\mathbf{f}_{t-1}$$
$$\mathbf{f}_t = \boldsymbol{\Phi}(L)\mathbf{f}_{t-1} + \mathbf{u}_t$$

= 990

Image: A = 1

Data Generating Processes

• DGP 1:

$$\begin{aligned} \chi_{it} &= \boldsymbol{\lambda}_i' \mathbf{F}_t \\ \mathbf{F}_t &= \boldsymbol{\Phi}(L) \mathbf{F}_{t-1} + \mathbf{G} \mathbf{u}_t \end{aligned}$$

$$\mathbf{G} = \begin{bmatrix} g_{11} & 0\\ g_{21} & 0\\ 0 & g_{32}\\ 0 & g_{42} \end{bmatrix}$$

$$(1 - \phi_j L)(1 - L)F_{jt} = g_{j1}u_{1t}$$
 $j = 1, 2$ permanent
 $(1 - \phi_j L)F_{jt} = g_{j2}u_{2t}$ $j = 3, 4$ transitory

三日 のへで

• DGP 2:

$$\chi_{it} = \boldsymbol{\lambda}'_{i;0}\mathbf{f}_t + \boldsymbol{\lambda}'_{i;1}\mathbf{f}_{t-1}$$
$$\mathbf{f}_t = \boldsymbol{\Phi}(L)\mathbf{f}_{t-1} + \mathbf{u}_t$$

$$(1 - \rho_1 L)(1 - L)f_{1t} = u_{1t} \quad \text{permanent} (1 - \rho_2 L)f_{2t} = u_{2t} \quad \text{transitory}$$

= 990

→ < Ξ

Cointegration and Idiosyncratic Component

• Suppose
$$\mathbf{x}_t = \mathbf{\Lambda} F_t + \boldsymbol{\xi}_t$$

- $x_{it} \beta x_{jt} = z_t$
- $z_t = (\lambda_i \beta \lambda_j) F_t + (\xi_{it} \beta \xi_{jt})$
- if $\xi_{it}, \xi_{jt} \sim I(0)$,
- then we can take $\beta = \frac{\lambda_i}{\lambda_j}$
- which implies $z_t = \xi_{it} \beta \xi_{jt} \Rightarrow z_t \sim I(0)$
- that is x_{it} and x_{jt} are cointegrated

▶ BACK!

$$y_{1t} = u_t + au_{t-1}$$

 $y_{2t} = u_t + bu_{t-1}$

Matteo Barigozzi Factor Models and Cointegration - Appendix

= 990

< E

$$\mathbf{y}_t = \begin{pmatrix} 1+aL\\1+bL \end{pmatrix} u_t$$

Matteo Barigozzi Factor Models and Cointegration - Appendix

= 990

< E

$$\mathbf{y}_t = \begin{pmatrix} 1+aL\\1+bL \end{pmatrix} u_t$$

$$\mathbf{y}_t - \mathbf{A}\mathbf{y}_{t-1} = \begin{pmatrix} 1\\1 \end{pmatrix} u_t,$$

= 990

< E

$$\mathbf{y}_t = \begin{pmatrix} 1+aL\\1+bL \end{pmatrix} u_t$$

$$\mathbf{y}_t - \mathbf{A}\mathbf{y}_{t-1} = \begin{pmatrix} 1\\1 \end{pmatrix} u_t,$$

$$\mathbf{A} = \frac{1}{b-a} \begin{pmatrix} ab & a^2 \\ b^2 & -ab \end{pmatrix}$$

< E

-