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Caveat emptor

I congratulate the author for the nice paper for taking a novel
approach to estimation (the approach finds me very sympathetic!)
There are many technicalities, but I will try to highlight the main
aspect of the paper trying to go easy with mathematical
subtleties—not sure I will succeed!



Likelihood Estimation | Key idea of the paper 3 / 14

The key idea

Models are restrictions on probability distribution of random variables
Such restrictions often involves certain moments, e.g.,∫

g(Yt+1; θ0)dF (Yt+1|It) = 0, a.s.I t

here It is a filtration.
Given {Yt}Tt=1, the econometrician wants to

estimate θ0— the “true” parameter vector
study of the “dynamics” of the model, e.g. impulse responses,
counterfactual analysis, etc.
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Estimation

If all element of {Yt}Tt=1 are observables then estimation can be
conducted by GMM, among other methods

θ̂ = argmin
θ∈Θ

(
T∑
t=1

g̃(yt+1, θ)

)′
W

(
T∑
t=1

g̃(yt+1, θ)

)
,

where
g̃(yt+1, θ) = A(It)⊗ g(yt+1, θ)

and we know everything there is to know about θ̂.......
Often, in very relevant cases, some of the elements of Yt+1 are not
directly observables — they are latent
To get the intuition, consider the case in which Yt+1 is fully observable



Likelihood Estimation | The Basic Problem 5 / 14

Probabilistic framework

The probability distribution coherent with the model are given

P(θ) =

{
P : P ∈P,

∫
g(Yt+1, θ)dP = 0

}
and

P =
⋃
θ∈Θ

P(θ)︸ ︷︷ ︸
conditional measures coherent with the model

Correct specification

F ∈ P︸ ︷︷ ︸
"true" measure belongs to P

Identification

F ∈ P(θ0) and F /∈ P(θ), for θ 6= θ0
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Main idea

1 Postulate a working conditional measure parameterized by ϕ

Q(yt+1|It , ϕ), with density q(yt+1|It+1, ϕ)

2 “Modify” Q in such a way that it belongs to P(θ)

3 This is accomplished by solving the following problem

min
H

∫
log
(
H

Q

)
dH, subject to

∫
g(yt+1,θ)dH=0

4 The solution to this problem is (in terms of densities)

h(yt+1|It , θ, ϕ) = exp(λ+ µ′g(yt+1, θ))q(yt+1|It , φ)
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Main Idea, ctd.

Inference is based on

T−1∏
t=0

h(yt+1|It , θ, ϕ) =
T−1∏
t=0

exp(λ+ µ′g(yt+1, θ))q(yt+1|It , ϕ)

For instance, by MLE

(θ̂, ϕ̂) = argmax
θ∈Θ,ϕ∈Φ

T−1∏
t=0

exp(λ+ µ′g(yt+1, θ))q(yt+1|It , ϕ)

By “well known” regularity conditions

θ̂
p−→ θ∗ ϕ̂

p−→ ϕ∗

are pseudo-true values
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Computational details

1 Draw from y
(s)
t+1 ∼ q(yt+1|It , ϕ)

2 Solve min(λ,µ)∈RM+1
1
S

∑S
s=1 exp(λ+ µ′g(y

(s)
t+1, θ))− λ

3 Intuition, the First Order Conditions (FOC)

0 =
1
S

S∑
s=1

exp(λ+ µ′g(y
(s)
t+1, θ))g(y

(s)
t+1, θ)

p−−−→
s→∞

∫
exp(λ+ µ′g(yt+1, θ))g(yt+1, θ)q(yt+1|It , ϕ)dyt+1

1 =
1
S

S∑
s=1

exp(λ+ µ′g(y
(s)
t+1, θ))

p−−−→
s→∞

∫
exp(λ+ µ′g(yt+1, θ))q(yt+1|It , ϕ)dyt+1
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2 Questions:

Correct specification

When does θ̂
p−→ θ0?

When
∃ϕ′

such that Q(yt+1|It , ϕ
′
) = F (yt+1|It)

that is, the base measure is correctly specified for the truth.... (can
be shown by simple KL arguments)

Identification
Suppose that Q is correctly specified as defined above. Is θ0 point
identified — whenever the model is point identified? Yes
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On Kullback-Leibler (or maximum entropy)

The method is based on being able to solve

min
H

∫
log
(
H

Q

)
dH, subject to

∫
g(yt+1,θ)dH=0

to obtain h(yt+1|It , θ, ϕ) = exp(λ+ µ′g(yt+1, θ))q(yt+1|It , φ).

1 When does a solution exists? Very challenging to establish necessary
and sufficient conditions, only sufficient are usually available

2 Existing results are for the unconditional problem (which is much
easier to deal with)

3 Whether a solution exists – crucially depends on the base density q
and the form of g (e.g. Komunjer and Ragusa, 2014)∫

sup
λ,µ

exp(λ+ µ′g(yt+1, θ))q(yt+1|It , ϕ)dyt+1 <∞

very strong requirement (all exponential moments of g w.r.t. q must
exists)

4 Weaker conditions are possible (Komunjer and Ragusa, 2014)
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Unsolved DSGE models

The paper uses a simple model from Ireland (2004)
The model has not dynamics and the moment condition depends only
on observables

yt = Akθt (ηtht)
1−θ

kt+1 = (1− δ)kt + yt − ct

γctht = (1− θ)yt

1 = βEt

{
ct
ct+1

(
θ

(
yt+1

kt+1

)
+ 1− δ

)}
The idea is to postulate, for xt = (yt , ct , ht , kt)

st = Bst−1 + εt

xt = Ast

which gives
xt |st−1 ∼ N(ABst−1,AΣA′)



Likelihood Estimation | DSGE Models
12 /

14

Unsolved DSGE models

Tilt xt |st−1 ∼ N(ABst−1,AΣA′) to satisfy the moment restriction, say

h(xt |st−1, θ,A,B) = exp(λ+ µ′g(xt , θ))N(ABst−1,AΣA′)

Use particle filter to obtain

h(xt |x1:t−1, θ,A,B), t = 1, . . . ,T

using standard predict/update filter recursion
Estimate unknown parameters by MLE (better do MCMC) on

h(x1:T , θ,A,B) =
T∏
t=1

h(xt |x1:t−1, θ,A,B)

Counterfactual analysis is possible (e.g., non-linear impulse responses)
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Unsolved DSGE models

Remarks:
Since the density upon which inference is based is the “closest” to the
base one, the base one should be a good approximation

Why not choose the solution to the linear model as base model

st = B(θ)st−1 + Σ1/2(θ)εt

xt = A(θ)st

and then work with a density that only depends on θ?
We then are working with the distribution implied by the linear
approximation to the model but which satisfies the moment condition
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Why not solving can be useful

Something to think about
The linearized DSGE model gives an approximate likelihood

f̃ (yt |y1:(t−1), ϕ(θ))

How this relate to the “true” yet unknown density?

f (yt |y1:(t−1), θ) = f̃ (yt |y1:(t−1), ϕ(θ)) + error(θ)

The approximation error is not uniform — do MCMC converge?

Do forcing the approximate density to satisfy the moment condition
ameliorate this?
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