Stochastic Cycles in VAR Processes

Massimo Franchi and Paolo Paruolo

MF: Università di Roma "La Sapienza"
PP: Joint Research Centre of the EC \& Università dell'Insubria

Second International Conference in Memory of Carlo Giannini Banca d'Italia, 19-20 January 2010.

of this paper

1. This paper presents an additive decomposition of the MA representation of VAR processes into cyclical components, associated with the characteristic roots of the VAR polynomial.
2. It is a Beveridge-Nelson type of decomposition in which the contribution of each root to the dynamics of the process is explicit. All the coefficients of the MAD representation are characterized in terms of the VAR coefficients.
3. Relations with structural time series models, see e.g. Harvey (1990), and with common features literature, see e.g. Engle and Kozicki (JBES, 1993), are discussed.

representation and characteristic roots

Consider a

$$
\text { VAR: } X_{t}+\Pi_{1} X_{t-1}+\cdots+\Pi_{d_{\Pi}} X_{t-d_{\Pi}}=\epsilon_{t}
$$

let

$$
\Pi(z):=\sum_{n=0}^{d_{\Pi}} \Pi_{n} z^{n}, \quad z \in \mathbb{C}, \quad \Pi_{n} \in \mathbb{R}^{p \times p}, \quad \Pi_{0}=l
$$

and

$$
\operatorname{det} \Pi(z)=\prod_{u=1}^{q}\left(1-w_{u} z\right)^{a_{u}}, \quad a_{u}>0
$$

where $z_{u}:=1 / w_{u}$ is a characteristic root and q is the total number of roots; then

$$
\operatorname{adj} \Pi(z)=: G(z) \prod_{u=1}^{q}\left(1-w_{u} z\right)^{b_{u}}, \quad 0 \leq b_{u}<a_{u}, \quad G\left(z_{u}\right) \neq 0
$$

Hence
$C(z):=\operatorname{inv} \Pi(z)=\frac{\operatorname{adj} \Pi(z)}{\operatorname{det} \Pi(z)}=\frac{G(z)}{\prod_{u=1}^{q}\left(1-w_{u} z\right)^{m_{u}}}, \quad G\left(z_{u}\right) \neq 0$,
where $m_{u}:=a_{u}-b_{u}>0$ is the order of the pole of $\operatorname{inv} \Pi(z)$ at z_{u}.

MA and BN

The complex roots come in conjugate pairs; let

$$
w_{u}=: \rho_{u} e^{\mathrm{i} \lambda_{u}}, \quad 0 \leq \lambda_{u}<2 \pi
$$

and index
a complex pair by $u: 0<\lambda_{u}<\pi$
and
a real root by $u: \lambda_{u} \in\{0, \pi\}$.

Theorem

The MAD representation of X_{t} is

$$
X_{t}=\sum_{u: 0<\lambda_{u}<\pi} A_{u}(L) c_{u}(L) \epsilon_{t}+\sum_{u: \lambda_{u} \in\{0, \pi\}} B_{u}(L) d_{u}(L) \epsilon_{t}+R(L) \epsilon_{t}
$$

where

$$
M(L):=\sum_{n=0}^{d_{M}} M_{n} L^{n}, \quad M_{n} \in \mathbb{R}^{p \times p}, \quad M=A_{u}, B_{u}, R,
$$

is a matrix polynomial of finite degree d_{M} and

$$
s(L):=\sum_{n=0}^{d_{s}} s_{n} L^{n}, \quad s_{n} \in \mathbb{R}, \quad s=c_{u}, d_{u}
$$

is a scalar polynomial of degree d_{s}.

Theorem ctd

Moreover,

$$
\operatorname{det} B_{u}(0)=0
$$

and $A_{u}(L), B_{u}(L), R(L)$ have finite degree

$$
d_{A_{u}}=2 m_{u}-1, \quad d_{B_{u}}=m_{u}-1, \quad d_{R}=d_{G}-d_{g},
$$

where m_{u} is the order of the pole of $\operatorname{inv} \Pi(z)$ at z_{u} and

$$
d_{s}=\infty \quad \Longleftrightarrow \quad\left|z_{u}\right|>1, \quad s=c_{u}, d_{u}
$$

1. I(1) and cointegration $z_{1}=1, m_{1}=1$, see Engle and Granger (ECTA, 1987), Stock and Watson (JASA, 1988).
2. I(2) and cointegration $z_{1}=1, m_{1}=2$: Johansen (ET, 1992).
3. Non stationary seasonal roots $z_{u}= \pm 1, z_{u}= \pm i, m_{u}=1$: Hylleberg, Engle, Granger, and Yoo (JoE, 1990), Cubadda (JAE, 1999), Johansen and Schaumburg (JoE, 1999).
4. Co-dependence $z_{u}=\infty, m_{u} \geq d_{\Pi}$: Gourieroux and Paucelle (WP, 1988), Vahid and Engle (JAE, 1993), Vahid and Engle (JoE, 1997), Franchi and Paruolo (WP, 2009).

Example from Benati and Surico (AER, 2009)

Let $X_{t}=\left(r_{t}, \pi_{t}, y_{t}\right)^{\prime}$ and consider

$$
\text { VAR: } X_{t}=A_{1} X_{t-1}+A_{2} X_{t-2}+\epsilon_{t}
$$

where A_{1}, A_{2} © because
$g(z)=c_{z}(z-1.24)(z-1.57)(z-2.18)(z-2.38)(z-2.95)(z-20.95)$,
each z_{u} is real and stable, $m_{u}=1$ and $d_{B_{u}}=0$. Moreover, because

$$
d_{R}=d_{G}-d_{g}=2-6<0
$$

the finite MA part $R(L) \epsilon_{t}$ is absent from the MAD.

Hence one has
$\operatorname{MAD}: X_{t}=\sum_{u=1}^{6} B_{u} d_{u}(L) \epsilon_{t}, \quad B_{u}=\gamma_{u} \delta_{u}^{\prime}, \quad d_{u}(z)=\sum_{n=0}^{\infty}\left(\frac{1}{z_{u}}\right)^{n} z^{n}$,
for γ_{u}, δ_{u} of dimension $3 \times 1 \sigma^{\sigma}$; that is,

$$
X_{t}=\sum_{u=1}^{6} \begin{array}{cc}
\gamma_{u} & c_{u, t} \\
(3 \times 1) & (1 \times 1)
\end{array}
$$

and we call $c_{u, t}:=d_{u}(L) \delta_{u}^{\prime} \epsilon_{t}$ the $u^{t h}$ stochastic cycle in X_{t}.

C3

C5

C2

C4

C6

between
 (red line) and $c_{u, t}$

X3,C1

Consider another example

$$
\text { VAR: } X_{t}=\left(\begin{array}{cc}
-1 & -4 / 3 \\
2 & 5 / 3
\end{array}\right) X_{t-1}+\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) X_{t-2}+\epsilon_{t}
$$

with

$$
g(z)=-\frac{1}{3}(2 z-3)
$$

hence $z_{1}=3 / 2, m=1$ and $d_{B}=0$. Moreover, because

$$
d_{R}=d_{G}-d_{g}=2-1=1
$$

the finite MA part $R_{0} \epsilon_{t}+R_{1} \epsilon_{t-1}$ is present in the MAD.

of structural shocks ctd

Hence one has

$$
\begin{gathered}
\text { MAD: } X_{t}=B d(L) \epsilon_{t}+R_{0} \epsilon_{t}+R_{1} \epsilon_{t-1}, \quad d(L)=\sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n} L^{n}, \\
B=\frac{1}{8}\binom{-7}{11}(3: 1)=: \gamma \delta^{\prime} ;
\end{gathered}
$$

that is, one has the factor structure

$$
X_{t}=\begin{array}{cc}
\gamma & c_{t} \\
(2 \times 1) & (1 \times 1)
\end{array}+R_{0} \epsilon_{t}+R_{1} \epsilon_{t-1}
$$

where $c_{t}:=d(L) \delta^{\prime} \epsilon_{t}$ is the only stochastic cycle in X_{t}.

of structural shocks ctd

A natural choice of

$$
A: \quad u_{t}=A \epsilon_{t}, \quad \operatorname{Var}\left(u_{t}\right)=I,
$$

is

$$
A=\binom{\left(\delta^{\prime} \Omega \delta\right)^{-1 / 2} \delta^{\prime}}{\left(\delta_{\perp}^{\prime} \Omega^{-1} \delta_{\perp}\right)^{-1 / 2} \delta_{\perp}^{\prime} \Omega^{-1}}, \quad \operatorname{Var}\left(\epsilon_{t}\right)=\Omega
$$

This implies

$$
c_{t}=d(L) \delta^{\prime} \epsilon_{t}=d(L) \delta^{\prime} A^{-1} u_{t}=d(L)\left(\delta^{\prime} \Omega \delta\right)^{1 / 2} u_{1, t}
$$

so that $u_{1, t}$ is the business cycle shock and $u_{2, t}$ is the idiosyncratic shock.

1. MAD includes many different representations as particular cases;
2. Its coefficients are explicit, non recursive functions of the VAR coefficients;
3. Inference in a likelihood based framework;
4. VARMA processes.

Gianni Rodati
C'era due volte il barone Lamberto wnotr

If $\left|z_{u}\right|>1$, then the expansion of $C(z)$ around 0 defines the

$$
\mathrm{MA}: X_{t}=\sum_{n=0}^{\infty} C_{n} \epsilon_{t-n}, \quad C_{n} \in \mathbb{R}^{p \times p}, \quad C_{0}=l
$$

if $z_{u}=1$ or $\left|z_{u}\right|>1$, then the expansion of $C(z)$ around 1 defines the

$$
\mathrm{BN}: X_{t}=C(1) \sum_{n=0}^{t} \epsilon_{t-n}+(1-L) \sum_{n=0}^{\infty} C_{n}^{*} \epsilon_{t-n}+\mathrm{in} . \text { values. }
$$

$$
A_{1}=\left(\begin{array}{ccc}
1.21 & 0.01 & 0.14 \\
-0.03 & 0.47 & 0.07 \\
-0.11 & -0.05 & 1.02
\end{array}\right), A_{2}=\left(\begin{array}{ccc}
-0.32 & -0.01 & -0.05 \\
0.02 & -0.02 & -0.02 \\
0.08 & 0.00 & -0.23
\end{array}\right) .
$$

matrices

$$
\begin{aligned}
& B_{1}=\left(\begin{array}{c}
1 \\
-0.03 \\
-0.13
\end{array}\right)(1.78:-0.27: 1.87) \\
& B_{2}=\left(\begin{array}{c}
1 \\
-0.22 \\
-1.18
\end{array}\right)(0.61: 0.69:-2.76) \\
& B_{3}=\left(\begin{array}{c}
1 \\
-1.44 \\
-2.28
\end{array}\right)(-0.51:-0.71: 0.58)
\end{aligned}
$$

matrices ctd

$$
\begin{aligned}
& B_{4}=\left(\begin{array}{c}
1 \\
0.7 \\
-0.87
\end{array}\right)(-0.97: 0.25: 0.28) \\
& B_{5}=\left(\begin{array}{c}
1 \\
1.8 \\
-14.4
\end{array}\right)(0.07: 0.04: 0.03) \\
& B_{6}=\left(\begin{array}{c}
1 \\
-31.5 \\
0.82
\end{array}\right) \frac{1}{1000}(0.16: 4:-0.4)
\end{aligned}
$$

