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Main contributions of this paper

1. This paper presents an additive decomposition of the MA
representation of VAR processes into cyclical components,
associated with the characteristic roots of the VAR polynomial.

2. It is a Beveridge-Nelson type of decomposition in which the
contribution of each root to the dynamics of the process is explicit.
All the coefficients of the MAD representation are characterized in
terms of the VAR coefficients.

3. Relations with structural time series models, see e.g. Harvey
(1990), and with common features literature, see e.g. Engle and
Kozicki (JBES, 1993), are discussed.
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VAR representation and characteristic roots

Consider a

VAR: Xt + Π1Xt−1 + · · · + ΠdΠ
Xt−dΠ

= ǫt ;

let

Π(z) :=

dΠ
∑

n=0

Πnz
n, z ∈ C, Πn ∈ R

p×p, Π0 = I ,

and

detΠ(z) =

q
∏

u=1

(1 − wuz)au , au > 0,

where zu := 1/wu is a characteristic root and q is the total number
of roots; then

adj Π(z) =: G (z)

q
∏

u=1

(1−wuz)bu , 0 ≤ bu < au, G (zu) 6= 0.
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Inverse function and poles

Hence

C (z) := inv Π(z) =
adjΠ(z)

det Π(z)
=

G (z)
∏q

u=1(1 − wuz)mu
, G (zu) 6= 0,

where mu := au − bu > 0 is the order of the pole of inv Π(z) at zu.

MA and BN

The complex roots come in conjugate pairs; let

wu =: ρue
iλu , 0 ≤ λu < 2π,

and index
a complex pair by u : 0 < λu < π

and
a real root by u : λu ∈ {0, π}.
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Moving Average Decomposition representation

Theorem

The MAD representation of Xt is

Xt =
∑

u : 0<λu<π

Au(L)cu(L)ǫt +
∑

u : λu∈{0,π}

Bu(L)du(L)ǫt + R(L)ǫt ,

where

M(L) :=

dM
∑

n=0

MnL
n, Mn ∈ R

p×p, M = Au, Bu, R,

is a matrix polynomial of finite degree dM and

s(L) :=

ds
∑

n=0

snL
n, sn ∈ R, s = cu, du,

is a scalar polynomial of degree ds .
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Moving Average Decomposition representation ctd

Theorem ctd

Moreover,
det Bu(0) = 0

and Au(L), Bu(L), R(L) have finite degree

dAu
= 2mu − 1, dBu

= mu − 1, dR = dG − dg ,

where mu is the order of the pole of inv Π(z) at zu and

ds = ∞ ⇐⇒ |zu| > 1, s = cu, du.
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Related results

1. I (1) and cointegration z1 = 1, m1 = 1, see Engle and Granger
(ECTA, 1987), Stock and Watson (JASA, 1988).

2. I (2) and cointegration z1 = 1, m1 = 2 : Johansen (ET, 1992).

3. Non stationary seasonal roots zu = ±1, zu = ±i , mu = 1 :
Hylleberg, Engle, Granger, and Yoo (JoE, 1990), Cubadda (JAE,
1999), Johansen and Schaumburg (JoE, 1999).

4. Co-dependence zu = ∞, mu ≥ dΠ : Gourieroux and Paucelle
(WP, 1988), Vahid and Engle (JAE, 1993), Vahid and Engle (JoE,
1997), Franchi and Paruolo (WP, 2009).
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Example from Benati and Surico (AER, 2009)

Let Xt = (rt , πt , yt)
′ and consider

VAR: Xt = A1Xt−1 + A2Xt−2 + ǫt

where A1, A2 Go ; because

g(z) = cz(z−1.24)(z−1.57)(z−2.18)(z−2.38)(z−2.95)(z−20.95),

each zu is real and stable, mu = 1 and dBu
= 0. Moreover, because

dR = dG − dg = 2 − 6 < 0,

the finite MA part R(L)ǫt is absent from the MAD.
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Example from Benati and Surico (AER, 2009) ctd

Hence one has

MAD: Xt =

6
∑

u=1

Budu(L)ǫt , Bu = γuδ
′
u, du(z) =

∞
∑

n=0

(

1

zu

)n

zn,

for γu, δu of dimension 3 × 1 Go ; that is,

Xt =
6

∑

u=1

γu

(3 × 1)
cu,t

(1 × 1)
,

and we call cu,t := du(L)δ′uǫt the uth stochastic cycle in Xt .
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Stochastic cycles in Xt
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Concordance between Xj ,t (red line) and cu,t
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Concordance between X3,t (red line) and cu,t ctd
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Identification of structural shocks

Consider another example

VAR: Xt =

(

−1 −4/3
2 5/3

)

Xt−1 +
1

2

(

1 1
1 1

)

Xt−2 + ǫt

with

g(z) = −
1

3
(2z − 3);

hence z1 = 3/2, m = 1 and dB = 0. Moreover, because

dR = dG − dg = 2 − 1 = 1,

the finite MA part R0ǫt + R1ǫt−1 is present in the MAD.

Massimo Franchi and Paolo Paruolo Stochastic Cycles in VAR processes



Identification of structural shocks ctd

Hence one has

MAD: Xt = B d(L)ǫt + R0ǫt + R1ǫt−1, d(L) =
∞

∑

n=0

(

2

3

)n

Ln,

B =
1

8

(

−7
11

)

(3 : 1) =: γδ′;

that is, one has the factor structure

Xt =
γ

(2 × 1)
ct

(1 × 1)
+ R0ǫt + R1ǫt−1,

where ct := d(L)δ′ǫt is the only stochastic cycle in Xt .
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Identification of structural shocks ctd

A natural choice of

A : ut = Aǫt , Var(ut) = I ,

is

A =

(

(δ′Ωδ)−1/2δ′

(δ′⊥Ω−1δ⊥)−1/2δ′⊥Ω−1

)

, Var(ǫt) = Ω.

This implies

ct = d(L)δ′ǫt = d(L)δ′A−1ut = d(L)(δ′Ωδ)1/2u1,t

so that u1,t is the business cycle shock and u2,t is the idiosyncratic
shock.
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Conclusions and work in progress

1. MAD includes many different representations as particular cases;

2. Its coefficients are explicit, non recursive functions of the VAR
coefficients;

3. Inference in a likelihood based framework;

4. VARMA processes.
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Dedicatory and thanks
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MA and BN representations

If |zu| > 1, then the expansion of C (z) around 0 defines the

MA: Xt =
∞

∑

n=0

Cnǫt−n, Cn ∈ R
p×p, C0 = I ;

if zu = 1 or |zu| > 1, then the expansion of C (z) around 1 defines
the

BN: Xt = C (1)
t

∑

n=0

ǫt−n + (1 − L)
∞

∑

n=0

C ∗
n ǫt−n + in. values.

Back
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A1, A2 matrices

A1 =





1.21 0.01 0.14
−0.03 0.47 0.07
−0.11 −0.05 1.02



 , A2 =





−0.32 −0.01 −0.05
0.02 −0.02 −0.02
0.08 0.00 −0.23



 .

Back
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Bu matrices

B1 =





1
−0.03
−0.13



 (1.78 : −0.27 : 1.87)

B2 =





1
−0.22
−1.18



 (0.61 : 0.69 : −2.76)

B3 =





1
−1.44
−2.28



 (−0.51 : −0.71 : 0.58)

Back
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Bu matrices ctd

B4 =





1
0.7

−0.87



 (−0.97 : 0.25 : 0.28)

B5 =





1
1.8

−14.4



 (0.07 : 0.04 : 0.03)

B6 =





1
−31.5
0.82





1
1000

(0.16 : 4 : −0.4)

Back
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