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PRELIMINARY VERSION
Abstract. This paper presents an additive decomposition of the moving average represen-tation of VAR processes into cyclical components. We give a de�nition of cyclical componentthat encompasses seasonal components as well as (stationary) long-run and short-run uctu-ations. Each cyclical component is univariate and is characterized by a spectrum with peakat a given spectral frequency. The representation is unique and it provides explicit formulaefor the the (dynamic) loadings of the variables onto the di�erent cyclical components. Wediscuss relations with existing de�nitions of stochastic cycles. Finally we discuss how toobtain cancelations of the cyclical components by linear combinations and/or by �ltering ofthe observed series.

1. Introduction
This paper presents an additive decomposition of the moving average representation ofVAR processes into cyclical components. We give a de�nition of cyclical component thatencompasses seasonal components as well as (stationary) long-run and short-run uctuations.Each cyclical component is univariate and is characterized by a spectrum with peak at agiven spectral frequency. The representation is unique and it provides explicit formulaefor the the (dynamic) loadings of the variables onto the di�erent cyclical components. Thepaper discusses how to obtain cancelations of the cyclical components by linear combinationsand/or by �ltering of the observed series. We discuss relations with existing de�nitions ofstochastic cycles.The rest of the paper is organized as follows: Section 2 introduces notation and de�nitionsof structures of interest, Section 3 present the additive cycle decomposition, Section 4 dis-cusses its relation with the n-order stochastic cycle of Harvey and Trimbur (2003). Section 5describes the spectral properties of the stochastic cycles, Section 6 discusses how to obtaincancelations of the cyclical components by linear combinations and/or by �ltering of theobserved series. Section 7 presents examples, while Section 8 reports conclusions. In theAppendices we present some mathematical results that are needed for the derivation of therepresentation results.A �nal word on notation. In the following, a := b and b =: a indicate that a is de�nedby b; any sum Pb

n=a � where b < a is de�ned equal to 0. For any matrix polynomial�(z) := Pd�
n=0 �nzn, z 2 C, �n 2 Cp�r where 0 < r � p, we indicate its degree by d�, i.e.
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d� := deg �(z) and 0 < d� <1; when �n 2 Rp�r we say that �(z) has real coe�cients. Forzu 2 C, jzuj indicates its modulus.For any full column rank matrix  2 Cp�r, � indicates its complex conjugate and 0 itsconjugate transpose; in case  is real, 0 reduces to the transpose. We indicate by col()the linear span of the columns of  with coe�cients in the �eld C or R if  is complexor real, respectively. ? indicates a basis of col?(), the orthogonal complement of col().� := (0)�1 so that P := �0 = �0 denotes the orthogonal projector matrix onto col()and M := I � P the orthogonal projector matrix onto col?(). For a matrix A we oftenemploy a rank factorization of the type A = ���0 where � and � are bases of col(A) andcol(A0), and the negative sign is chosen for convenience in the calculations. Finally, 1j;k isthe indicator function equal to 1 if j = k and 0 otherwise.
2. Setup and definitions

In this section we introduce notation and state the autoregressive (AR) and moving average(MA) representation of a VAR system. We consider the vector autoregressive process (VAR)of �nite order d�
(2.1) d�X

n=0
�nXt�n = �t

where �n 2 Rp�p, �0 = I and �t is a p-dimensional martingale di�erence sequence (withrespect to the natural �ltration generated by Xt) with positive de�nite conditional covari-ance matrix 
. A leading example of this is when �t are Gaussian i.i.d. random vectors.Deterministic components Dt are omitted from (2:1) for ease of exposition; they could beincluded by replacing Xt with Xt �Dt or by replacing �t with �t +Dt.Indicate the AR polynomial in (2:1) by �(z) := Pd�
n=0�nzn, z 2 C, and let k(z) :=det�(z), K(z) := adj�(z) be respectively its characteristic and adjoint polynomials, whereinv�(z) = K(z)=k(z). Remark that, because �(z) has real coe�cients, so do k(z) andK(z). It is useful to factorize the characteristic polynomials in terms of its roots; because�(0) = I, one can write k(z) = Qq

u=1(1� wuz)au , where wu := z�1
u and zu is a root of k(z)with multiplicity au > 0. We also de�ne � := minu jzuj and observe that � > 0 because�(0) = I.The power series representation of inv�(z) has real coe�cients and it is written as

C(z) := inv�(z) = dCX
n=0

Cnzn; jzj < �;
where dC < 1 if and only if dg = 0, i.e. �(z) is unimodular. Here C(0) = C0 = inv�0 =inv I = I. It is well known (see e.g. Brockwell and Davis, 1987, page 408) that if �(z) hasstable roots � > 1, so that C(z) is holomorphic on a disk larger than the unit disk, then thefollowing moving average (MA) form corresponds to a linear process with second moments,
(2.2) Xt = C(L)�t:

3. Additive cycles decomposition representation
Some of the factors in k(z) could be common to K(z); we state the cancelation of theircommon factors as the following lemma, for ease of later reference. The same lemma givesalso the order of the pole of inv�(z) at z = zu, labeled mu.
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Lemma 3.1 (inv�(z) has pole of order mu at z = zu). One has

K(z) =: G(z) qY
u=1

(1� wuz)bu ; 0 � bu < au; G(zu) 6= 0;
where G(z) has real coe�cients,

inv �(z) = G(z)g(z) ; z 2 C n fz1; : : : ; zqg ;
where

g(z) := qY
u=1

(1� wuz)mu ; mu := au � bu > 0;
has real coe�cients, and inv �(z) has a pole of order mu at z = zu.
In Theorem 3.2 below, we introduce a novel representation, which we call the additivecycles (ACD) representation of Xt. This is derived from the Laurent series representationof C(z) and gives an additive decomposition of the MA form Xt =P1

n=0Cn�t�n, where thecontribution of each root to the dynamics of the process is made explicit, see Franchi andParuolo (2009) for details and proofs. In (3:1) below, Xt is written as the sum of matrixpolynomials Au(L), Bu(L) which respectively load the MA(1) processes cu(L)�t, du(L)�tplus an additional �nite MA part R(L)�t, which is present only when dG � dg. All thecoe�cients of such a representation are real and uniquely determined by �(z).We represent the reciprocal of both real and complex roots in polar form, i.e. we de�ne(�u; �u) from wu =: �uei�u with 0 � �u < 2�, and order them using a lexicographic order1on the pairs (�u; �u). In Theorem 3.2 below we present the additive cycles decompositionrepresentation of Xt.
Theorem 3.2 (Additive cycles decomposition (ACD) representation). Let wu =: �uei�u with0 � �u < 2�; then one has

(3.1) Xt = X
u : 0<�u<�

Au(L)cu(L)�t + X
u :�u2f0;�g

Bu(L)du(L)�t +R(L)�t;
with Au(z), Bu(z), R(z) matrix polynomials with real coe�cients and degree dAu = 2mu� 1,dBu = mu � 1, dR = dG � dg and
(3.2) cu(z) :=

 1X
n=0

sin(n+ 1)�usin�u �nuzn
!mu ; du(z) :=

 1X
n=0

wnuzn
!mu ;

where these power series representations converge for jzj < �.
Proof. See Franchi and Paruolo (2009). �

The following remarks are in order:i) Eq. (3:1) gives an additive decomposition of the MA form Xt =P1
n=0Cn�t�n, wherethe contribution of each root to the dynamics of the process is made explicit. All thecoe�cients in (3:1) are real and uniquely determined by �(z).

1This means t < s if and only if �t < �s or (�t = �s and �t < �s).
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ii) In the �rst term one �nds the contribution of the complex roots. In particular, thecomponent of the dynamics of Xt which is due to the complex pair zu; z�u is givenby Au(L)cu(L)�t, where yu;t := cu(L)�t, with �t a univariate white noise, is the MArepresentation of the univariate AR(2mu) process
(1� 2�u cos�uL+ �2uL2)muyu;t = �t

and
1� 2�u cos�uz + �2uz2 = (1� wuz)(1� w�uz);

using wu = �u(cos�u + i sin�u).iii) When mu = 1, cu(L)�t describes a cycle with period 2�=�u and amplitude �2u. Thecoe�cients of cu(z) are 'n := sin(n+1)�u
sin�u �nu, composed of a cyclical function sin(n+1)�u

sin�utimes a damping factor �nu. If mu = 2, cu(z) has a power series representation withcoe�cients given by the convolution of the coe�cients f'ng with themselves, i.e. then-th coe�cient in the power series cu(z) is cu;n = Pn
j=0 'j'n�j. Similarly for thecases mu = 3; : : : one obtains the mu-th order convolution.iv) In the second term one �nds the contribution of the positive (�u = 0) and negative(�u = �) real roots. The contribution of zu is given by Bu(L)du(L)�t, where yu;t :=du(L)�t, with �t a univariate white noise, is the MA representation of the univariateAR(mu) process

(1� wuL)muyu;t = �t:
When mu = 1, du(L)�t gives either a dampened oscillation for wu < 0 or a geometricdecay if wu > 0. We observe that the remark in iii) applies here substituting cu(z),'n with du(z), wn. This gives the generic coe�cient of du(z) as the mu-th orderconvolution of fwng.v) When dG � dg, one �nds the additional term R(L)�t of �nite degree dG� dg. Henceonly the �rst two terms are responsible for the presence of in�nite memory in Xt, i.e.for cov(Xt; Xt�n) 6= 0 for all n.

4. Relationship with the stochastic cycles of Harvey and Trimbur
In this section we discuss the relationship between univariate AR(2)n processes and thestochastic cycles of Harvey (1990), Harvey and Trimbur (2003), Trimbur (2006), see alsoLuati and Proietti (2009) for extensions. Both processes have the same AR polynomial, andthey di�er because of the presence of a MA component present in the stochastic cycles ofHarvey and Trimbur (2003), which is absent in the AR(2)n processes.The MAD representation involves AR(2)n processes yn;t as stochastic cycles or order n,where yn;t is de�ned by

(4.1) �1� 2� cos�L+ �2L2�n yn;t = �t
with �t an uncorrelated univariate white noise with mean 0 and covariance matrix �2

� . TheAR polynomial of (4.1) is a(L)n where a(L) is the polynomial a(z) := 1�(2� cos�) z+�2z2 =�1� �ei�z� �1� �e�i�z�, with two complex conjugate roots at ��1e�i�.
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Harvey and Trimbur (2003), building on Harvey (1990), consider the following bivariateprocesses  [j]
t := � [j]

1;t :  [j]
2;t

�0
(4.2)  [j]

t = G [j]
t�1 + S [j�1]

t ; G := � cos� sin�
� sin� cos�

! ; S :=  1 00 0
! ;

for j = 1; 2; : : : ; n, where 0 � � � � is a given frequency, 0 < � � 1, and  [0]
t := (�1t : �2t)0 isan uncorrelated white noise with mean 0 and covariance matrix � := diag(�2

1; �2
2). Becauseof the selection matrix S, there is no loss of generality in setting �2

2 = 0. They identify  [n]
1;tas the n-th order stochastic cycle. Trimbur (2006) studied the properties of such processeswhen S = I2 and �2

1 = �2
2. We consider here the original setup (4.2) of Harvey and Trimbur(2003), with �2

2 = 0, which involves a single input disturbance �1t, as in the AR(2)n case.The univariate representation of  [n]
1;t is an ARMA(2n,n) of the type

(4.3) �1� 2� cos�L+ �2L2�n  [n]
1;t = (1� � cos�L)n �1;t;as can be obtained by computing the �nal equations form of (4:2), see Harvey and Trimbur(2003)2. Comparing (4.1) and (4.3) one sees that  [n]

1;t and yn;t share the same AR polyno-mial a(L)n; however, while yn;t has no MA polynomial,  [n]
1;t involves the MA(n) polynomial(1� � cos�L)n.Another way to discuss the relationship between  [n]

1;t and yn;t is by comparing the com-panion form of yn;t directly with the de�nition (4.2) of  [n]
1;t . To this end, de�ne Y [j]

t := (yj;t :yj;t�1)0 as state vector for (4.1); one �nds
(4.4) Y [j]

t = FY [j]
t�1 + SY [j�1]

t ; F :=  2� cos� ��21 0
!

for j = 1; 2; : : : ; n with Y [0]
t := (�t : 0)0, and covariance E(Y [0]

t Y [0]0
t ) = diag(�2

� ; 0). Thefollowing theorem shows that the matrices G in (4.2) and F in (4.4) are similar.
Theorem 4.1. The matrices G in (4:2) and A in (4:4) are similar, i.e. G = HFH�1 orF = H�1GH with

H := ��2 + 1� 12  � (� sin�)�1 cot�0 1
! ; H�1 = ��2 + 1�� 1

2

 
�� sin� � cos�0 1

! ;
where both F and G have as matrix of eigenvalues � := diag(�ei�; �e�i�).
We observe that F , G, H are all real matrices, unlike the matrix of eigenvalues � :=diag(�ei�; �e�i�), which is complex. The following corollary shows that this implies that thegenerating mechanisms in (4.2) and (4.4) are related by the nonsingular transformation Habove.

Corollary 4.2. Consider the AR(2) process y1;t de�ned in (4:1) with companion representa-

tion (4:4) and the matrix H as de�ned in Theorem 4:1; then  [1]
t = HY [j]

t satis�es eq. (4:2)
with n = 1 and

(4.5) �2
1 = �2

�
�2 + 1�2 sin2 �; �2

2 = 0:
Vice-versa one can generate  [1]

t as in (4:2) with (4:5) and set Y [1]
t = H�1 [1]

t which

satis�es (4:4) for n = 1.
2See pag. 247 there, the lines preceding eq. (11).
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Let H =: (H1 : H2)0 and H�1 =: (H1 : H2)0, where H 0
j and Hj0 are the j-th rows of Hand H�1 respectively. The Corollary above implies that the bivariate generating mechanismsof Y [1]

t and  [1]
t correspond 1 to 1, and  [1]

1;t and y1;t can be obtained by di�erent samplingschemes from this bivariate process. In fact, one could generate the stochastic cycle  [1]
t andobtain  [1]

1;t and y1;t as  [1]
1;t = (1 : 0) [1]

t and y1;t = H10 [1]
t , where (1 : 0) and H10 are thesampling vectors. Symmetrically, one could generate the stochastic cycle Y [1]

t and obtain [1]
1;t and y1;t as  [1]

1;t = H 0
1Y [1]

t and y1;t = (1 : 0)Y [1]
t , where H 0

1 and (1 : 0) are the samplingvectors from the same bivariate process Y [1]
t .The comparison of the companion form with (4.2) in the general case n > 1 is less straight-forward. In fact, pre-multiplying (4:4) by H one �nds

(4.6) �HY [n]
t

� = G�HY [n]
t�1

�+HSY [n�1]
twhere, however, HS 6= SH, i.e. the two matrices do not commute. If they did, then (4.6)would be equal to (4:2) when setting  [n]

t = HY [n]
t .

5. Spectra of stochastic cycles
As it is well know, see e.g. Fuller (1996) Section 4.3, the spectral density fy (�) of anAR(1)n

(5.1) (1� wuL)n yn;t = �tis given by
fy (�) = �2

�2�
� 11� 2wu cos � + w2

u

�n ; �� � � � �:
Similarly, the spectral fy (�) of an AR(2)n process (4.1) is given by
fy (�) = �2

�2�
� 11� 2�u cos (�u � �) + �2u

�� 11� 2�u cos (�u + �) + �2u
� ; �� � � � �

[Include �gures and description]
6. Filtering

First we present a procedure called `polynomial rank factorization' of �(z) at z = zu; itconsists in performing a sequence of mu rank factorizations on the matrices in (6:2).
De�nition 6.1 (Polynomial rank factorizationof �(z) at z = zu). Let zu, u = 1; : : : ; q, be
a characteristic root of �(z) = Pd�

n=0�(u)
n (z � zu)n and de�ne �u;0 and �u;0 of dimensionp� ru;0, where 0 < ru;0 < p, from the matrix rank factorization

(6.1) �(u)
0 = ��u;0�0u;0:

For j = 1; : : : ;mu, let au;j := (�u;0 : � � � : �u;j�1), bu;j := (�u;0 : � � � : �u;j�1) and rmax
u;j :=p�Pj�1

n=0 ru;n and de�ne �u;j and �u;j of dimension p�ru;j, where 0 � ru;j < rmax
u;j for j 6= mu

and 0 < ru;mu = rmax
u;mu, from the matrix rank factorization

(6.2) Mau;j�(u)
j;1Mbu;j = ��u;j�0u;j;

where �(u)
j;k is de�ned for j; k � 1 from the recursions

(6.3) �(u)
j;k := �(u)

j�1;k+1 +�(u)
j�1;1

j�2X
n=0

��u;n��0u;n�(u)
n+1;k
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with initial values �(u)
0;k := �(u)

k�1.The polynomial rank factorization in De�nition 6.1 gives a characterization of the setof reduced rank restrictions that are satis�ed by the coe�cients of a matrix polynomialwhose inverse function has a pole of given order at a speci�c point. That is, if �(z) andits derivatives at z = zu satisfy those conditions then inv�(z) has a pole of order mu atthe same point; the converse is also true, i.e. if inv �(z) has a pole of order mu at z = wuthen �(z) and its derivatives at z = zu satisfy the rank restrictions of the polynomial rankfactorization at that point. Hence the polynomial rank factorization is a one to one andonto map from the structure of the matrix polynomial to the nature of the singularity of itsinverse function. This result is based on the recursive algorithm developed in Franchi (2009)and further analyzed in Franchi and Paruolo (2009).The following additional remarks are in order:Remark 6.2. Eq. (6:1), (6:2) de�ne �u;j, �u;j up to a conformable change of bases of the

row and column spaces; this does not a�ect the results.Remark 6.3. The p�p matrices (�u;0 : � � � : �u;mu) and (�u;0 : � � � : �u;mu) are non-singular
with orthogonal blocks, i.e. �0u;j�u;k = �0u;j�u;k = 0 for j 6= k.Remark 6.4. The conditions (6:2) are reduced-rank conditions for j = 1; � � � ;mu� 1, while
the terminal condition for j = mu is a full-rank condition.Remark 6.5. For zu = 1, and mu = 1, mu = 2 these conditions were derived by Johansen

(1992) and are called the I(1) and I(2) conditions.Here we present implications of the polynomial rank factorization; in particular, usingthe coe�cients de�ned above, we construct polynomials u;j(z) such that, for any ' 6= 0,'00u;j(z) inv�(z) has a pole of order j = 0; : : : ;mu at z = zu, see Theorem 6.6 below.Theorem 6.6 (Filtering). For u = 1; : : : ; q, let
(6.4) 0u(z) := �0u;0 � ��0u;0 mu�1X

k=1
(�zu)k�(u)

k (1� wuz)k;
where �u;0, �u;0 and �(u)

0;k are de�ned by the polynomial rank-decomposition of �(z) at z = zu;
then 0u(L)Xt

does not contain the contribution of zu.That is, the linear combinations in 6.4 eliminate the component of the dynamics which isdue to a speci�c characteristic root. In the nex corollary, we report the leading case wheremu = 1 for all u.Corollary 6.7 (Example with mu = 1). Let mu = 1, u = 1; : : : ; q; then one has

Xt = qX
u=1

Budu(L)�t +R(L)�t;
with R(z) a matrix polynomial with real coe�cients and degree dR = dG � dg, du(z) :=P1

n=0wnuzn, wu 2 C, converges for jzj < � and

Bu = ���u;1��0u;1:This shows that �0u;0Xt does not contain the contribution of zu.
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7. Examples
For ` = !;  , let 1`; = 0 if ` = ! and 1`; = 1 if ` =  and consider �`(L)X`

t = �t, where
�`(z) :=  1 00 1

!+ 13
 3 4
�6 �5 + 1`; 

! z � 12
 11

! (1 : 1) z2;
with MA representations X`

t =P1
n=0C`

n�t�n, where
C!

0 = C 
0 =  1 00 1

! ; C!
1 = C 

1 = 13
 
�3 �46 5� 1`; 

! ;
and for n = 2; 3; : : : , C 

n is non-singular and
C!
n = cn18

 
�711

! (3 : 1) where cn := �23
�n�2 :

Note that the two processes are indistinguishable from the perspective of the column spacesof the VAR coe�cients, while they are very di�erent from the MA perspective: the �rst hasgot a factor structure that is absent from the second one. The reason becomes evident bylooking at their ACD representation; �rst we compute
k!(z) := det�!(z) = �

13(2z � 3); k (z) := det� (z) = �
16(z3 � 2z2 + 2z � 6)

and
K`(z) := adj�`(z) =  1 00 1

!+ 13
 
�5 + 1`; �46 3

! z � 12
 1
�1

! (1 : �1) z2;
Because k!(z) has only one root with multiplicity one, i.e. z1 = 3

2 and m!
1 = 1, anddK! � dk! = 1, one has

X!
t = B 1X

n=0

�23
�n �t�n +R0�t +R1�t�1;

where B = 1
8

 
�711

! (3 : 1), R0 = 1
8

 29 7
�33 �3

! and R1 = 3
4

 1
�1

! (1 : �1). Because
k (z) has a pair of complex roots with � ' 0:62, � ' 0:53� and a real root z3 ' 2:28 allwith multiplicity one and dk > dk , one has

X 
t ' (A0 + A1L) 1X

n=0

sin(n+ 1)0:53�sin 0:53� 0:62n�t�n +B 1X
n=0

0:44n�t�n
where A0 '

 2:44 0:14
�2:23 0:78

!, A1 '

 
�0:11 �1:260:78 1:32

! and B '

 
�11:55

! (1:44 : 0:13).
Because A0; A1 are non singular, this explains the absence of a factor structure.

8. Conclusions
The ACD representation provides a decomposition of a VAR process into cyclical compo-nents, which are closely connected with existing de�nitions of stochastic cycles. Cancelationsof the cyclical components by linear combinations and/or by �ltering of the observed seriesis discussed.
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Appendix A. Proofs
Proof of Lemma 3.1. Because det�(zu) = 0 one has 0 � rank�(zu) � p � 1; when 0 �rank�(zu) < p� 1 one has adj�(zu) = 0 and thus each entry of adj�(z) contains the factor(1� z=zu)bu for some 0 < bu < au; if rank�(zu) = p� 1 then adj�(zu) 6= 0 and thus bu = 0.If Im zu 6= 0 then the same applies to z�u. Let g(z) :=Qq

u=1(1�z=zu)mu =: (1�z=zu)mugu(z);because inv�(z) := adj�(z)
det�(z) and G(zu); gu(zu) 6= 0 one has the last statement. This completesthe proof. �

Proof of Theorem 4.1. The eigenvalue decomposition of the companion matrix F is FV =V � with � = diag(�ei�; �e�i�) and
V := ��2 + 1�� 1

2

 �ei� �e�i�1 1
! ; V �1 = (�2 + 1) 122i sin�

 ��1 �e�i�
���1 ei�

! ;
and the one of the matrix G is GU = U� with

U =  �i i1 1
! ; U�1 := 12

 i 1
�i 1

! :
Hence V �1FV = � = U�1GU , from which G = HFH�1 or F = H�1GH for H := UV �1with

H := UV �1 = (�2 + 1) 122i sin�
 
�2i��1 2i cos�0 2i sin�

! = ��2 + 1� 12  � (� sin�)�1 cot�0 1
! :

�

Proof. of Corollary 4.2 From Theorem 4.1 we see that HY [1]
t = (HFH�1)HY [1]

t�1 +HSY [0]
t ,where HSY [0]

t = HY [0]
t has covariance

E(HY [0]
t Y [0]0

t H 0) = �2
1H
 1 00 0

!H 0 = �2
1
�2 + 1�2 sin2 �

 1 00 0
! :

�
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