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ABSTRACT. This paper presents an additive decomposition of the moving average represen-
tation of VAR processes into cyclical components. We give a definition of cyclical component
that encompasses seasonal components as well as (stationary) long-run and short-run fluctu-
ations. Each cyclical component is univariate and is characterized by a spectrum with peak
at a given spectral frequency. The representation is unique and it provides explicit formulae
for the the (dynamic) loadings of the variables onto the different cyclical components. We
discuss relations with existing definitions of stochastic cycles. Finally we discuss how to
obtain cancelations of the cyclical components by linear combinations and/or by filtering of
the observed series.

1. INTRODUCTION

This paper presents an additive decomposition of the moving average representation of
VAR processes into cyclical components. We give a definition of cyclical component that
encompasses seasonal components as well as (stationary) long-run and short-run fluctuations.
Each cyclical component is univariate and is characterized by a spectrum with peak at a
given spectral frequency. The representation is unique and it provides explicit formulae
for the the (dynamic) loadings of the variables onto the different cyclical components. The
paper discusses how to obtain cancelations of the cyclical components by linear combinations
and/or by filtering of the observed series. We discuss relations with existing definitions of
stochastic cycles.

The rest of the paper is organized as follows: Section 2 introduces notation and definitions
of structures of interest, Section 3 present the additive cycle decomposition, Section 4 dis-
cusses its relation with the n-order stochastic cycle of Harvey and Trimbur (2003). Section 5
describes the spectral properties of the stochastic cycles, Section 6 discusses how to obtain
cancelations of the cyclical components by linear combinations and/or by filtering of the
observed series. Section 7 presents examples, while Section 8 reports conclusions. In the
Appendices we present some mathematical results that are needed for the derivation of the
representation results.

A final word on notation. In the following, a := b and b =: a indicate that « is defined
by b; any sum Zzza- where b < a is defined equal to 0. For any matrix polynomial
m(z) == Ziﬂ:o 2", 2 € C, m, € CP*" where 0 < r < p, we indicate its degree by d, i.e.
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d; :=degm(z) and 0 < d, < oco; when 7, € RP*" we say that 7(z) has real coefficients. For
zy € C, |2,| indicates its modulus.

For any full column rank matrix v € CP*", ~* indicates its complex conjugate and v its
conjugate transpose; in case 7 is real, 7' reduces to the transpose. We indicate by col(7)
the linear span of the columns of v with coefficients in the field C or R if v is complex
or real, respectively. v, indicates a basis of col*(7), the orthogonal complement of col(~y).
¥ :=y(y'v)"! so that P, := 49 = 4% denotes the orthogonal projector matrix onto col(7)
and M, := I — P, the orthogonal projector matrix onto col*(y). For a matrix A we often
employ a rank factorization of the type A = —«f’ where a and § are bases of col(A) and
col(A’), and the negative sign is chosen for convenience in the calculations. Finally, 1, is
the indicator function equal to 1 if 7 = k and 0 otherwise.

2. SETUP AND DEFINITIONS

In this section we introduce notation and state the autoregressive (AR) and moving average
(MA) representation of a VAR system. We consider the vector autoregressive process (VAR)
of finite order dp

dn
(21) ZHnXt—n = €¢
n=0

where I1,, € RP*P_ TI, = I and ¢ is a p-dimensional martingale difference sequence (with
respect to the natural filtration generated by X;) with positive definite conditional covari-
ance matrix €. A leading example of this is when ¢, are Gaussian i.i.d. random vectors.
Deterministic components D, are omitted from (2.1) for ease of exposition; they could be
included by replacing X; with X; — D, or by replacing ¢; with ¢ + D;.

Indicate the AR polynomial in (2.1) by TI(z) := 3% T,2", z € C, and let k(z) :=
detTI(z), K(z) := adjII(z) be respectively its characteristic and adjoint polynomials, where
invIl(z) = K(z)/k(z). Remark that, because II(z) has real coefficients, so do k(z) and
K(z). Tt is useful to factorize the characteristic polynomials in terms of its roots; because

1

[1(0) = I, one can write k(z) = []?_, (1 — wy2)*, where w, := 2, ' and z, is a root of k(z)

u=1
with multiplicity a, > 0. We also define p := min, |z,| and observe that p > 0 because
I1(0) = I.

The power series representation of inv I1(z) has real coefficients and it is written as
do
C(z) :==invII(z) = Zan", |z| < p,
n=0

where d¢ < oo if and only if d, = 0, i.e. II(z) is unimodular. Here C'(0) = Cy = invIly =
invI = I. It is well known (see e.g. Brockwell and Davis, 1987, page 408) that if II(z) has
stable roots p > 1, so that C'(z) is holomorphic on a disk larger than the unit disk, then the
following moving average (MA) form corresponds to a linear process with second moments,

(2.2) X, = C(L)e,.

3. ADDITIVE CYCLES DECOMPOSITION REPRESENTATION

Some of the factors in k(z) could be common to K(z); we state the cancelation of their
common factors as the following lemma, for ease of later reference. The same lemma gives

also the order of the pole of invII(z) at z = z,, labeled mi,,.



Lemma 3.1 (invII(z) has pole of order m, at z = z,). One has

K(z) = G(2) [ [l = wu2)’, 0< by <au, Glz) #0,

u=1

where G(z) has real coefficients,

invIl(z) =

where

Q
—~

N
~—

I
—=

(1 — wy2)™, My = a, — b, >0,

has real coefficients, and inv11(2) has a pole of order m, at z = z,.

In Theorem 3.2 below, we introduce a novel representation, which we call the additive
cycles (ACD) representation of X;. This is derived from the Laurent series representation
of C'(z) and gives an additive decomposition of the MA form X; =3 > C,,¢,_,,, where the
contribution of each root to the dynamics of the process is made explicit, see Franchi and
Paruolo (2009) for details and proofs. In (3.1) below, X; is written as the sum of matrix
polynomials A,(L), B,(L) which respectively load the MA(occo) processes ¢,(L)e;, dy(L)e;
plus an additional finite MA part R(L)e;, which is present only when de > d,. All the
coefficients of such a representation are real and uniquely determined by II(z).

We represent, the reciprocal of both real and complex roots in polar form, i.e. we define
(Ay, pu) from w, =: pue? with 0 < )\, < 27, and order them using a lexicographic order!
on the pairs (A, py). In Theorem 3.2 below we present the additive cycles decomposition
representation of X;.

Theorem 3.2 (Additive cycles decomposition (ACD) representation). Let w, =: p,e** with
0 < A\, < 2m; then one has

(3.1) Xo= Y AdD)e@)e+ Y Bu(L)dy(L)e + R(L)e,
w:0< Ay <7 u: Ay €{0,7m}

with Ay(2), By(2), R(z) matriz polynomials with real coefficients and degree dy, = 2m, — 1,
dBu = My — 1, dR = dG — dg and

(3.2) cu(z) = (Z Wﬁz”) : dy(z) = (Z wZz") ’,

where these power series representations converge for |z| < p.
Proof. See Franchi and Paruolo (2009). O

The following remarks are in order:

i) Eq. (3.1) gives an additive decomposition of the MA form X, = >~ Cy€;_,, where
the contribution of each root to the dynamics of the process is made explicit. All the
coefficients in (3.1) are real and uniquely determined by TI(2).

IThis means ¢ < s if and only if A, < A, or (A = Xs and py < ps).



i1) In the first term one finds the contribution of the complex roots. In particular, the
component of the dynamics of X; which is due to the complex pair z,,z; is given
by Au(L)cy(L)e, where y,; == ¢,(L)(;, with {; a univariate white noise, is the MA

representation of the univariate AR(2m,,) process
(1 = 2py cos A\, L + szQ)mu'!/u,t =

and
1 —2p,c0o8 Nz + p22° = (1 — w,2)(1 — wz),

using w, = p,(cos A, +1isin \,).

iit) When m, = 1, ¢,(L)(; describes a cycle with period 27/), and amplitude p2. The
sin(n+1)Ay sin(n+1)A\y
sin Ay sin Ay

times a damping factor p?. If m, = 2, ¢,(z) has a power series representation with

coefficients of ¢,(2) are ¢, = pr, composed of a cyclical function
coefficients given by the convolution of the coefficients {, } with themselves, i.e. the
n-th coefficient in the power series ¢,(z) is ¢, = Z?:o ©jPn—j. Similarly for the
cases m, = 3, ... one obtains the m,-th order convolution.

iv) In the second term one finds the contribution of the positive (A, = 0) and negative
(A, = m) real roots. The contribution of z, is given by B, (L)d,(L)e;, where y,,; :=
d,(L)(;, with ¢; a univariate white noise, is the MA representation of the univariate
AR(m,) process

(1 - wuL)muyu,t - Ct-

When m,, =1, d,(L)(; gives either a dampened oscillation for w, < 0 or a geometric
decay if w, > 0. We observe that the remark in i) applies here substituting c,(z),
©n with d,(z), w,. This gives the generic coeflicient of d,(z) as the m,-th order
convolution of {w,}.

v) When dg > dg, one finds the additional term R(L)e; of finite degree dg — d,. Hence
only the first two terms are responsible for the presence of infinite memory in Xy, i.e.
for cov(Xy, Xy_p,) # 0 for all n.

4. RELATIONSHIP WITH THE STOCHASTIC CYCLES OF HARVEY AND TRIMBUR

In this section we discuss the relationship between univariate AR(2)" processes and the
stochastic cycles of Harvey (1990), Harvey and Trimbur (2003), Trimbur (2006), see also
Luati and Proietti (2009) for extensions. Both processes have the same AR polynomial, and
they differ because of the presence of a MA component present in the stochastic cycles of
Harvey and Trimbur (2003), which is absent in the AR(2)™ processes.

The MAD representation involves AR(2)™ processes y,; as stochastic cycles or order n,
where y,, ; is defined by

(4.1) (1 —2pcos AL + p°L*)" ynr =

with (; an uncorrelated univariate white noise with mean 0 and covariance matrix 0?. The

AR polynomial of (4.1) is a(L)™ where a(L) is the polynomial a(z) := 1—(2pcos \) z+p?2? =

(1 — pe™z) (1 — pe ™z), with two complex conjugate roots at p~ e,
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Harvey and Trimbur (2003), building on Harvey (1990), consider the following bivariate
. . . !
processes P = (wﬂ : ng]t)

) P =Gl r st Gi=p| BN A e (10
—sin A cos A 00

for j =1,2,...,n, where 0 < A < 7 is a given frequency, 0 < p < 1, and w}@ = (K1 @ k) 18

an uncorrelated white noise with mean 0 and covariance matrix ¥ := diag(c?, 02). Because

of the selection matrix S, there is no loss of generality in setting 02 = 0. They identify 1/}%"2

as the n-th order stochastic cycle. Trimbur (2006) studied the properties of such processes

when S = I, and 0% = 035. We consider here the original setup (4.2) of Harvey and Trimbur

(2003), with 02 = 0, which involves a single input disturbance ry, as in the AR(2)" case.
The univariate representation of 1/}5"2 is an ARMA(2n,n) of the type

(4.3) (1 —2pcos AL + p°L?)" WQ = (1—=pcosAL)" k1,

as can be obtained by computing the final equations form of (4.2), see Harvey and Trimbur
(2003)2. Comparing (4.1) and (4.3) one sees that 1/}5"2 and y,, share the same AR polyno-
mial a(L)™; however, while y,; has no MA polynomial, wgng involves the MA(n) polynomial
(1 —pcos AL)".

Another way to discuss the relationship between ¢§”j and y,; is by comparing the com-
panion form of y,, ; directly with the definition (4.2) of 1/)@ To this end, define th = (Y :
y;i—1) as state vector for (4.1); one finds

: , y 5 e
(4.4) vV = Pyl syl = ( S )
for j = 1,2,...,n with Yt[o] := (¢ : 0), and covariance E(Yt[O}Yt[O]') = diag(ggj()). The
following theorem shows that the matrices G in (4.2) and F in (4.4) are similar.

Theorem 4.1. The matrices G in (4.2) and A in (4.4) are similar, i.e. G = HFH ' or
F = H'GH with

1 —(psin )™ cot A _ —1 [ —psin A pcosA
Hiz(p2+1)2< (po) 1 ) Hl:(pzﬂ)z( FE )

where both F and G have as matriz of eigenvalues A := diag(pe?*, pe ).

We observe that F', G, H are all real matrices, unlike the matrix of eigenvalues A :=
diag(pe*, pe=™), which is complex. The following corollary shows that this implies that the
generating mechanisms in (4.2) and (4.4) are related by the nonsingular transformation H

above.

Corollary 4.2. Consider the AR(2) process yi 4 defined in (4.1) with companion representa-
tion (4.4) and the matriz H as defined in Theorem 4.1; then oW = HY satisfies eq. (4.2)
with n =1 and
2
+1

45 2 g2 LT 2= 0.
(45) o1 =% p?sin? A %2

Vice-versa one can generate ¥\ as in (4.2) with (4.5) and set v = H which
satisfies (4.4) forn = 1.

2See pag. 247 there, the lines preceding eq. (11).



Let H =: (H; : H,)' and H™! =: (H' : H?)', where H! and H’" are the j-th rows of H
and H - respectively. The Corollary above implies that the bivariate generating mechanisms
of Y and I/)t correspond 1 to 1, and 1/)?1 and y;, can be obtained by different sampling
schemes from this bivariate process. In fact, one could generate the stochastic cycle 1/)t[1] and
obtain Q/JH and y;, as 1/)511 = (1:0)y!" and y1, = H"y!", where (1 : 0) and H" are the
sampling vectors. Symmetrically, one could generate the stochastic cycle th and obtain
Q/JHf and ;¢ as 1/1511 = H{Y;m and y;, = (1 : O)Yt[ ) where H{ and (1 : 0) are the sampling
vectors from the same bivariate process th.

The comparison of the companion form with (4.2) in the general case n > 1 is less straight-
forward. In fact, pre-multiplying (4.4) by H one finds

(4.6) (H Yt["]> =G (H Yt[i“l) + HSY," !

where, however, HS # SH, i.e. the two matrices do not commute. If they did, then (4.6)
would be equal to (4.2) when setting ¢[" = HY,".

5. SPECTRA OF STOCHASTIC CYCLES

As it is well know, see e.g. Fuller (1996) Section 4.3, the spectral density f, () of an
AR(1)"

is given by

2 n
£, (6) = = ! C r<b<n
Y 27r

1 — 2w, cos f + w?

Similarly, the spectral f, (6) of an AR(2)"™ process (4.1) is given by

ot 1 1 r<6<
2m \1—2p,cos (A, —0) +p2 ) \1—2p,cos (A, +0)+p2)’ TeEET

[Include figures and description)]

fy (0) =

6. FILTERING

First we present a procedure called ‘polynomial rank factorization’ of I1(z) at z = z,; it

consists in performing a sequence of m,, rank factorizations on the matrices in (6.2).

Definition 6.1 (Polynomial rank factorizationof I1(z) at z = z,). Let z,, u =1,...,q, be
a characteristic root of 11(z) = ngo e (z — z)™ and define auo and Pyo of dimension

D X Ty, where 0 < ryo < p, from the matriz rank factorization
(6.1) 11§ = —a,,068L -

Forj—l My, let ayj = (0ot -+ @ ayjot), buy = (Buo + -+ ¢ Puj-1) and T8 =
p—z o Tun and define ay, ; and By ; of dimension p Xy j, where 0 <y ; < % for j 75 My

max

and 0 < rym, =7 from the matrix rank factorization

(6.2) M,, M, = —au;8. .
where Hg“k) i1s defined for j,k > 1 from the recursions
=
(6.3) ngk:) = ngi)ucﬂ + Hg@l,l 7%“@;@1_[7(1121,]4:



(u)

with initial values HO,k: = H,(;i)l.

The polynomial rank factorization in Definition 6.1 gives a characterization of the set
of reduced rank restrictions that are satisfied by the coefficients of a matrix polynomial
whose inverse function has a pole of given order at a specific point. That is, if TI(2) and
its derivatives at z = z, satisfy those conditions then invII(z) has a pole of order m, at
the same point; the converse is also true, i.e. if invII(z) has a pole of order m, at z = w,
then TI(2) and its derivatives at z = 2, satisfy the rank restrictions of the polynomial rank
factorization at that point. Hence the polynomial rank factorization is a one to one and
onto map from the structure of the matrix polynomial to the nature of the singularity of its
inverse function. This result is based on the recursive algorithm developed in Franchi (2009)
and further analyzed in Franchi and Paruolo (2009).

The following additional remarks are in order:

Remark 6.2. FEq. (6.1), (6.2) define v, ;, Bu; up to a conformable change of bases of the
row and column spaces; this does not affect the results.

Remark 6.3. The pxp matrices (cu : -+t Qum,) and (Buo : -+ 1 Bum,) are non-singular
with orthogonal blocks, i.e. o, jou = By, ;Buk =0 for j # k.
Remark 6.4. The conditions (6.2) are reduced-rank conditions for j =1,-+- m, — 1, while

the terminal condition for j = m, is a full-rank condition.

Remark 6.5. For z, =1, and m, = 1, m, = 2 these conditions were derived by Johansen
(1992) and are called the I(1) and I(2) conditions.

Here we present implications of the polynomial rank factorization; in particular, using
the coefficients defined above, we construct polynomials v, ;(z) such that, for any ¢ # 0,
©'Vyj(2)invII(2) has a pole of order j =0,...,m, at z = z,, see Theorem 6.6 below.

Theorem 6.6 (Filtering). Foru=1,...,q, let

My —1

(64) %IL(Z) = uO _u() Z 1 - wuz)ka

(u)

where a0, Pup and 11, are defined by the polynomial rank-decomposition of II(z) at z = z,;
then
YulL)X:

does not contain the contribution of z,.

That is, the linear combinations in 6.4 eliminate the component of the dynamics which is
due to a specific characteristic root. In the nex corollary, we report the leading case where
m, = 1 for all u.

Corollary 6.7 (Example with m, = 1). Let m, =1, u=1,...,q; then one has
q
=> Budy(L)e + R(L)ey,

with R(z) a matriz polynomial with real coefficients and degree dp = dg — dg, d,(z) =
S qwiz™, w, € C, converges for |z| < p and
- _Bu,lo_l; 1

This shows that [/, OXt does not contain the contribution of z,.



7. EXAMPLES

For ¢ = w, 1, let 155 =0 if { = w and 15 = 1 if £ = ¢ and consider I1*(L) X} = ¢;, where

o _[10Y) 1([ 3 1 1(1 o
H('Z)'_(o 1>+§<—6 —5+1é,¢>2_§(1)(1‘1)z’

with MA representations X} = >">° Cte¢; ,,, where

10 1{ -3 -4
ce =Y = : v =CY == 7
0 1 3\ 6 5— 1y

and for n = 2,3,..., C¥ is non-singular and

L [ =T 2\"?
Cn_ﬁ< 1 )(3.1)Wherecn.— <§> :

Note that the two processes are indistinguishable from the perspective of the column spaces
of the VAR coefficients, while they are very different from the MA perspective: the first has
got a factor structure that is absent from the second one. The reason becomes evident by
looking at their ACD representation; first we compute

B9 (2) = det TI(2) = —%(22 S3), R(2) = det TV (z) = —%(z?’ _9:2 12, 6)

K(z2) ;:adjnf(z):((l) g>+é<_5;1“’ _34)2—%<_11>(1:—1)z2,

Because k“(z) has only one root with multiplicity one, i.e. 2z = 5 and m{ = 1, and

and

dge — dpe = 1, one has
oo 2 n
X'=1B = nt+ R Rieq,
" §%<3> €t—n + L€ + [T164

-7 29 7 1
WhereB:§< " )(3:1),R0:%<_33 _3) andezﬁ(_1>(1:—1). Because
k¥(z) has a pair of complex roots with p ~ 0.62, A ~ 0.537 and a real root z3 ~ 2.28 all
with multiplicity one and dy > d», one has

=< sin(n + 1)0.537 =
X} ~ (Ag+ AL 0.62"%;,_, + B Y 0.44"¢;_,
t (Ao + 4y )HZ:% sin 0.537 Cton HZ:% “
2.44  0.14 —0.11 —1.26 —1
where Ay ~ , Ay~ and B ~ (1.44 : 0.13).
—2.23 0.78 0.78 1.32 1.55

Because Aj, A; are non singular, this explains the absence of a factor structure.

8. CONCLUSIONS

The ACD representation provides a decomposition of a VAR process into cyclical compo-
nents, which are closely connected with existing definitions of stochastic cycles. Cancelations
of the cyclical components by linear combinations and/or by filtering of the observed series
is discussed.



APPENDIX A. PROOFS

Proof of Lemma 3.1. Because detIl(z,) = 0 one has 0 < rankII(z,) < p — 1; when 0 <
rank I1(z,) < p—1 one has adjII(z,) = 0 and thus each entry of adjII(z) contains the factor
(1 —z/2,)b for some 0 < b, < a,; if rank TI(z,) = p — 1 then adjII(z,) # 0 and thus b, = 0.

If Im 7, # 0 then the same applies to z}. Let g(z) := [/ _;(1—2/z,)™ =: (1 —2/2,)™ gu(2);
because inv I[1(z) := % and G(zy), gu(2,) 7 0 one has the last statement. This completes
the proof. O

Proof of Theorem 4.1. The eigenvalue decomposition of the companion matrix F' is F'V =
VA with A = diag(pe™, pe *) and

_1 pez)\ pefz/\ . (p2+1)2 pfl _efz/\
Vo= (p+1)7 pr= ),
(v +1) ( 11 ) 2isinA \ —pl et

and the one of the matrix G is GU = UA with

U= o , U’lzzl i,l.
11 2\ —i 1

Hence V'FV = A = U 'GU, from which G = HFH 'or FF = H 'GHfor H := UV !
with

2+ 1)% —2ip~! 2icos A 1 —(psinA)™" cot A
He—pyt = P HD? — (p?+1)2 .
21 sin A 0 2isinA (7" +1) 0 1

O

Proof. of Corollary 4.2 From Theorem 4.1 we see that HY}") = (HFH-)HY,"\ + HSY,",
where H SYt[O] =H Y;[O] has covariance

10 pP+1 (10
E(HY vV gy = o2 H H =2 1T .
HYPY) = ol {0 U2sin?a \ 0 0
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