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Gaussian structural models

I Gaussianity is at the heart of everything we do today, be it a
VAR model or a DSGE model.

I The assumption of Gaussianity makes life easier and even
enjoyable:

I Straightforward to form the likelihood with the standard
Kalman filter.

I Available and powerful computing packages such as Dynare.

I Macroeconomists have strong views, such as hours worked in
response to technology shocks, and the magnitude of fiscal
multipliers, and the underlying economic and financial
stability.

I Many of these views are based on inferences derived from
Gaussian structural models.



Trap

I This assumption is not good as we see that model innovations
often contain fat tails and sometimes considerable skewness.

I Shock variances change abruptly over time (Christiano,
Eichenbaum, and Evans 1999, Stock and Watson 1997, 2003,
and Sims and Zha 2006).

I Structural breaks do occur, such as financial crisis.

I Markov-switching would be a flexible short-cut to handle
abrupt and discontinuous changes in economic structures.

I How challenging is it to estimate Markov-switching structural
models?



Out of the trap

I The good news is that technological advances in recent
liteture make it computationally feasible to estimate
Markov-switching structural models.

I One can form the likelihood by approximating it arbitrarily
well.

I We are working closely with Dynare to make estimation of
Markov-switching structural models available to users.



What is at stake?

I With the new technology, it is urgent to know, more than
ever, whether accounting for Markov switching features
changes economic inferences.

I Answer to this question is important as it leads to many
research questions.
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The RRR model

I The Ramey-Romer-Romer (RRR) VAR model with 5 variables:
yt =

[
dg ,t , dt,t , gt , tt , xt

]′
, where dg ,t represents exogenous

changes in government spending, dt,t represents exogenous
changes in government taxes, gt is the logarithm of total
government spending, tt is the logarithm of total government
taxes, and xt is the logarithm of GDP. The variables dg ,t and
dt,t are measured as a percent of GDP and the remaining
three variables are measured in real and per capita terms.

I The lag length is 4.

I Following RRR, the identification assumption is of Choleski
ordering.



The MU model

I The Mountford and Uhlig (2009) model with 3 variables:
yt =

[
gt , tt , xt

]′
.

I The lag length is 4.

I The identification follows the sign-restriction approach of
Mountford and Uhlig (2009), where a spending shock is
identified as generating positive responses of gt for at least 4
quarters and a tax-cut shock as generating negative responses
of tt for at least 4 quarters.



Fiscal multipliers

I Let fr2f ,j and xr2f ,j be the impulse responses of a fiscal
variable (e.g., government spending) and GDP at period j to
a shock to the fiscal variable, where the subscript “r2f” stands
for “response to fiscal variable.”

I Following Blanchard and Perotti (Section V, 2002) and
Mountford and Uhlig (2009), we define the fiscal multiplier at
period k = 1, 2, . . . as

Mf ,k =

∑k
j=1 β

j−1xr2f ,j∑k
j=1 β

j−1fr2f ,j

/
f

x
,

where β is a quarterly discount factor and f
x is an average

share of the fiscal variable in GDP.



Breakdown of Gaussianity
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Breakdown of Gaussianity
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Breakdown of Gaussianity
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Consequence of the breakdown
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What have we learned?

I Wrong (overoptimistic) inferences about how uncertain we are
about the fiscal multiplier.

I Can seriously bias the estimate.
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The aggregation sector

I The aggregate technologies are:

Lt =

[∫ 1

0
Lt(i)

1
µwt di

]µwt

, Yt =

[∫ 1

0
Yt(j)

1
µpt dj

]µpt

,

I Firms face perfectly competitive markets, taking prices as
given. The demand functions for labor skill i and for good j :

Ld
t (i) =

[
Wt(i)

W̄t

]− µwt
µwt−1

Lt , Y d
t (j) =

[
Pt(j)

P̄t

]− µpt
µpt−1

Yt ,

I Perfectly competition =⇒

W̄t =

[∫ 1

0
Wt(i)1/(1−µwt)di

]1−µwt

; P̄t =

[∫ 1

0
Pt(j)1/(1−µpt)dj

]1−µpt



Households

I The utility function for each household:

E
∞∑

t=0

βtAt

{
ln(Ct − bCt−1)− Ψ

1 + η
Lt(h)1+η

}
,

I Each household’s budget constraint

P̄tCt +
P̄t

Qt
[It + a(ut)Kt−1] + EtDt,t+1Bt+1 ≤

Wt(h)Ld
t (h) + P̄trktutKt−1 + Πt + Bt + Tt .

I Following ACEL (2004) and CEE (2005), the cost of capital
utilization a(ut) is increasing and convex.

I Biased technology Qt grows at a rate of λq.



Households

I Following Greenwood, Hercowitz, and Krusell (1997) and
ACEL (2004), the investment-specific technological change Qt

has a deterministic trend with a rate of λq and a stochastic
component (allowing for non-stationarity).

I The importance of including such an investment-specific
technology is further documented by Krusell, Ohanian, Ŕıos
-Rull, and Violante (2000).

I The law of motion for capital accumulation is

Kt = (1− δt)Kt−1 + [1− S(It/It−1)] It ,

I S(·) represents the adjustment cost in capital accumulation.



Wage-setting decisions

I The decisions are staggered across households.

I In each period, a fraction ξw of households cannot re-optimize
their wage decisions and, among those who cannot
re-optimize, a fraction (γw ) of them index their nominal
wages to the price inflation realized in the past period:

Wt(h) = πγw
t−1π

1−γwλ∗t−1,tWt−1(h).

I If ξw = 0, the optimal wage decision implies that the nominal
wage is a markup over the MRS between leisure and
consumption.



Firms

I The production function for the type j good:

Yt(j) = K f
t (j)α1 [ZtL

f
t (j)]α2 ,

where the neutral technology Zt has a deterministic trend
with the growth rate λz and a stochastic component.

I Real rigidity : following Chari, Kehoe, and McGrattan (2000),
we assume α1 + α2 ≤ 1 (some firm-specific factors).

I The pricing decisions are staggered across firms. The
probability that a firm does not adjust its price is ξp, and a
fraction (γp) of those firms index their prices:

Pt(j) = π
γp

t−1π
1−γpPt−1(j),

I If ξp = 0 for all t, the optimal price is a markup over the
marginal cost at time t.



Monetary policy

The Taylor rule:

Rt = κtR
ρr
t−1

[(πt

π∗

)φπ
Ỹ
φy
t

]1−ρr

eσr (st)εr,t .



Estimation

I Data. 8 observables: yt = [∆ log Y Data
t , ∆ log CData

t ,
∆ log I Data

t , ∆ log wData
t , ∆ log QData

t , log πData
t , log LData

t ,
FFRData

t
400 ]’.

I Measurement equations:

yt = a + Hzt ,

I The state vector zt contains 27 variables plus the six lagged
variables ŷt−1, ĉt−1, ît−1, ŵt−1, q̂t−1, and ẑt−1.

I State equations with Markov normal mixture:

zt = c + Fzt−1 + C (st)εt ,
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Gaussian vs Markov normal mixture
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Gaussian vs Markov normal mixture
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When can structural breaks occur?

I Peso problem.

I Model innovations are highly skewed.

I Financial crisis.

I Shifts in fiscal and monetary policy.



Markov-switching DSGE models

Consider a general class of Markov-switching forward-looking
models:

A(st) a1 (st)
(n−`)×n

a2 (st)
`×n

 xt
n×1

=

B(st) b1 (st)
(n−`)×n

b2 (st)
`×n

xt−1
n×1

+

Ψ(st) ψ1 (st)
(n−`)×k

ψ2 (st)
`×k

 εt
k×1

+

Π(st) π2 (st)
(n−`)×`
π2 (st)
`×`

 ηt
`×1

,

(1)
where xt is an n × 1 set of endogenous variables, a1, a2, b1, b2, ψ,
and π are conformable parameter matrices, εt is a k × 1 vector of
i.i.d. random variables and ηt is an `× 1 vector of expectational
errors (endogenous shocks), defined by the second block of ` rows
of this system. The matrix Π (st) is assumed to have full rank, and
thus without loss of generality we take π1 (st) = 0, π2 (st) = I`,
ψ1 (st) = ψ (st), and ψ2 (st) = 0, where I` is the `× ` identity
matrix.



Markov-switching DSGE models

I The vector xt can be partitioned as xt =
[
yt , zt ,Etyt+1

]′
,

where yt is of dimension ` and the second block of Equation
(1) is of the form yt = Et−1yt + ηt .

I The transition matrix is

Pi ,j = pi ,j = Pr(st = j | st−1 = i).



The fixed-point algorithm

The FP algorithm applies to an expanded state vector Xt and
constant parameter matrices A,B,Ψ and Π such that system (1)
can be written as

AXt = BXt−1 + Ψut + Πηt . (2)



The fixed-point algorithm

The algorithm begins with a family of matrices {φi}hi=1 where h is
the number of Markov states or regimes and each φi has dimension
`× n with full row rank. Define ej as a column vector equal to 1 in
the j th element and zero everywhere else and the matrix Φ as

Φ
(`−1)h×nh

=

 e′2 ⊗ φ2
...

e′h ⊗ φh

 . (3)



The fixed-point algorithm

Let the matrices A, B, and Π be given by the expressions

A
nh×nh

=

 diag (a1 (1) , · · · , a1 (h))
a2 · · · a2

Φ

 , (4)

B
nh×nh

=

 diag (b1 (1) , · · · , b1 (h)) (P ⊗ In)
b2 · · · b2

0

 , (5)

Π
nh×`

=
[

0, π, 0
]′
. (6)



The fixed-point algorithm

The goal of the algorithm is to find {φ1, φ2, ...φh}: the fixed point
of a system of nonlinear equations.

Beginning with a set of matrices
{
φ

(0)
i

}h

i=2
, define Φ(0) using

Equation (3) and generate the associated matrix A(0). Next,

calculate z
(1)
i by computing the QZ decomposition of

{
A(0),B

}
and set φ

(1)
i = z

(1)
i . This leads to a new matrix A(1) and a new set

of values for φ
(1)
i . Repeat this procedure and, if it converges,

Equation (2) will generate sequences {xt , ηt}∞t=1 that are
consistent with Equation (1).



Important qualification

The qualification “if it converges” is important because, as we
will show later, it may not converge even in the simplest rational
expectations model.



Theorem

If {xt , ηt}∞t=1 is an MSV solution of Equation (1), then

xt = VstF
1
stxt−1 + VstG

1
stεt , (7)

ηt = −
(
F 2

stxt−1 + G 2
stεt
)
, (8)

where Vj is n × (n − `), F 1
j is (n − `)× n, F 2

j is `× n, G 1
j is

(n − `)× k, and G 2
j is `× k . Furthermore,

[
A(j)Vj Π

]
is

invertible and [
A(j)Vj Π

] [F 1
j

F 2
j

]
= B(j), (9)

[
A(j)Vj Π

] [G 1
j

G 2
j

]
= Ψ(j), (10) h∑

j=1

pi ,jF
2
j

Vi = 0`,n−`. (11)



The Farmer, Waggoner, Zha (FWZ) algorithm

The key is to find matrices Vj . Since Π′ = [0`,n−` I`], and Vj is
only defined up to right multiplication by an invertible matrix, it
follows that

A(j)Vj =

[
In−`
−Xj

]
(12)

for some `× (n − `) matrix Xj . Since

F 2
j =

[
0`,n−` I`

] [
A(j)Vj Π

]
B(j)

=
[
Xj I`

]
B(j),

Equation (11) becomes

h∑
j=1

pi ,j

[
Xj I`

]
B(j)A(i)−1

[
In−`
−Xi

]
= 0`,n−`. (13)



The FWZ algorithm

Define fi as a function from Rh`(n−`) to R`(n−`) given by

fi (X1, · · · ,Xh) =
h∑

j=1

pi ,j

[
Xj I`

]
B(j)A(j)−1

[
In−`
−Xj

]
(14)

and f as a function from Rh`(n−`) to Rh`(n−`) given by

f (X1, · · · ,Xh) = (f1 (X1, · · · ,Xh) , · · · , fh (X1, · · · ,Xh)) . (15)

Finding an MSV equilibrium is equivalent to finding the roots of
f (X1, · · · ,Xh).



A simple model

φstπt = Etπt+1 + δstπt−1 + βst rt , (16)

rt = ρstπt−1 + εt . (17)



Example with an unique MSV equilibrium

We set δst = 0, βst = β = 1, and ρst = ρ = 0.9 for all values of st ,
φ1 = 0.5, φ2 = 0.8,P1,1 = 0.8, and P2,2 = 0.9. The FWZ
algorithm converged quickly to the following MSV equilibrium for
all initial conditions:

πt = −10.2892rt−1 − 11.43243εt , for st = 1,

πt = −7.85675rt−1 − 8.27027εt , for st = 2.



Failure of other algorithms

For tractability, let us simplify the model even further by assuming
that φ1 = φ2 = φ = 0.85. It follows from the FP algorithm or
other iterative algorithms that

g
(n)
1 =

(
g

(n−1)
1 + β

)
ρ

φ
.

Since the MSV solution g1 is great than 1 in absolute value and

ρ/φ > 1, g
(n)
1 will go to either plus infinity or minus infinity

(depending on the initial guess) as n→∞. Thus these algorithms
fail to find the MSV equilibrium.



Example with multiple MSV equilibria

The parameter configuration:

φ1 = 0.2, φ2 = 0.4, δ1 = −0.7, δ2 = −0.2, β1 = β2 = 1,

ρ1 = ρ2 = 0,P1,1 = 0.9,P2,2 = 0.8.

One can show that there are three stationary MSV equilibria given
by

πt = g1,stπt−1 + g2,stεt ,

where

g1,1 = −0.765149, g1,2 = −0.262196, first MSV equilibrium

g1,1 = 0.960307, g1,2 = 0.646576, second MSV equilibrium

g1,1 = −0.826316, g1,2 = 0.96551, third MSV equilibrium



Example with multiple MSV equilibria

I The FP and other iterative algorithms, no matter what the
initial guess (unless it is set at an MSV solution), converge to
only one MSV equilibrium (the first one reported above).

I The FWZ algorithm converges rapidly to all the MSV
solutions when we vary the initial guess randomly.



General Markov-switching state-space form

I Measurement equations:

yt
ny×1

= ast
ny×1

+ Hst
ny×nz

zt
ny×nz

+ ut
ny×1

.

I State equations:

zt
nz×1

= bst
nz×1

+ Fst
nz×nz

zt−1
nz×nz

+ εt
nz×1

,

where

E
(
εtε
′
t

)
= Vst

nz×nz

, E
(
utu
′
t

)
= Rst

ny×ny

, E
(
εtu
′
t

)
= Gst

nz×ny

.



Exact Kalman filter

I From t = 1, . . . ,T ,

I ût = yt − ast − Hstzt|t−1;

I Dt = HstPt|t−1H
′
st + Rst ;

I Kt+1,t =
(
Fst+1Pt|t−1H

′
st + Gst

)
D−1

t ;

I zt+1|t = bst+1 + Fst+1zt|t−1 + Kt+1,t ût ;

I Pt+1|t = Fst+1Pt|t−1F
′
st+1
− Kt+1,tDtK

′
t+1,t + Vst+1 .



Problem

I The filter at time t depends on the entire history of regimes
{s1, . . . , st}.

I Thus, infeasible to obtain the conditional likelihood
p(yt | Yt−1, θ) exactly.

I But we can approximate the conditional likelihood arbitrarily
well computationally.



Hamilton (1994)’s filter

I General case where the transition probability from st−1 = j to
st = i is qi ,j(Yt−1,w). Given p(s0 | Y0, θ,w), one can show
the following propositions are true.

I Proposition 1: For t > 0,

p (st | Yt−1, θ,w) =
∑

st−1∈H

qst ,st−1 (Yt−1,w) p (st−1 | Yt−1, θ,w) .

I Proposition 2: For t > 0,

p (st | Yt , θ,w) =
p (yt | Yt−1, θ,w , st) p (st | Yt−1, θ,w)∑

st∈H p (yt | Yt−1, θ,w , st) p (st | Yt−1, θ,w)
.

I Proposition 3: For 0 ≤ t < T ,

p (st | Yt , θ,w , st+1) = p
(
st | YT , θ,w ,S

T
t+1

)
.



Waggoner and Zha’s filter (Kim and Nelson, 1999)

I Starting with z1|0(s1) and P1|0(s1) and from t = 1, . . . ,T ,

I ût(st) = yt − ast − Hstzt|t−1(st);

I Dt(st) = HstPt|t−1(st)H ′st + Rst ;

I Kt+1,t(st+1, st) =
(
Fst+1Pt|t−1(st)H ′st + Gst

)
Dt(st)−1;

I zt+1|t(st+1) =
∑h

st=1 P (st | Yt , θ,w , st+1)
[
bst+1 +

Fst+1zt|t−1(st) + Kt+1,t(st+1, st)ût(st)
]
;

I Pt+1|t(st+1) =∑h
st=1 P (st | Yt , θ,w , st+1)

[
Fst+1Pt|t−1(st)F ′st+1

−

Kt+1,t(st+1, st)Dt(st)Kt+1,t(st+1, st)′ + Vst+1

]
.



Likelihood

I Assumption: ut and εt are of joint Markov normal mixture.

I p(yt |Yt−1, θ,w , st) = N
[(

ast + Hstzt|t−1(st)
)
,Dt(st)

]
.

I p(yt |Yt−1, θ,w , st) =

(2π)−
ny
2 |Dt(st)|−

1
2 exp

(
−1

2 ût(st)′Dt(st)−1ût(st)
)
.

I Form the likelihood at time t by integrating out all regimes st :

p (yt , | Yt−1, θ,w) =
h∑

st=1

p(yt |Yt−1, θ,w , st) p(st | Yt−1, θ,w)

I log LH = log p(YT |Y0, θ,w) =
∑T

t=1 log p(yt |Yt−1, θ,w).
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Methodological point of view

I The whole Bayesian enterprise for structural modeling, with
the help of Dynare, currently depends on the assumption of
Gaussianity.

I The fact that shock variances often switch regime and
structural breaks do occur raises serious questions about the
validity of the likelihood based on Gaussianity.

I Confidence can be restored if we specify the correct likelihood
with Markov-switching features.

I Geweke and Amisano (2009) show the robustness of
incorporating Markov normal mixture in the improvement of
the model’s fit.

I The results I presented show the economic importance of
accounting for (1) Markov normal mixture for model
innovations and (2) Markov switching for structural breaks.



What do we take away from this analysis?

I Structural models with Markov-switching features (especially
with Markov normal mixture for shock processes) are not only
a state of art but also necessary for accurate economic
inferences (a lot is at stake here).

I Recent advances in technology have resolved most analytical
and numerical difficulties associated with Markov-switching
models, including forward-looking rational expectations
models.

I We are working closely with Dynare to make estimation of
Markov-switching structural models available to users.

I It is my hope that we’ll soon be able to estimate this kind of
models with ease and to address some urgent research
questions, such as financial crisis and a shift to
unconventional monetary policy.
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