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Abstract

Can structural vector autoregressions (VARs) discriminate between macro mod-

els? In simulation exercises, VARs will only infrequently reject the true data gen-

erating process. However, equally important is power: the rejection rate of false

hypothesis. For a set of DSGE models, we report power results for both the stan-

dard test of the sign on impact and a test of the shape of the response. We find

that testing the shape is more powerful than testing the sign and is also can be

more powerful than another commonly used non-VAR-based test. Therefore, we

conclude that structural VARs are useful for testing macro models.
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1 Introduction

Are long-run structural vector autoregressions (VARs) useful for discriminating between

macro models? Because the long-run identifying assumption holds in a broad class of

models, these VARs are potentially a useful tool for evaluating and critiquing alternative

structural macro models and by doing so can play an important role in developing struc-

tural models with empirically realistic dynamics.1 Recently, there has been a spirited

debate about the role of VARs in achieving this objective. Chari Kehoe and McGrattan

(2008) [CKM] argue that structural VARs with long-run restrictions are not useful in

developing business cycle models. For a correctly specified VAR2, they claim that "the

∗Federal Reserve Board of Governors. Email: robert.j.vigfusson@frb.gov
1Several recent papers have identified a technology shock in the U.S. macroeconomic data using a

long-run restriction. These papers include Gali (1999); Francis and Ramey (2003); and Altig, Christiano,

Eichenbaum, and Linde (2004). Identifying how the economy responds to a technology shock has the

potential to be useful to help us determine how to best model the economy.
2In the model that CKM studies, hours worked is stationary. In such a case, as is discussed in

Christiano Eichenbaum and Vigfusson (2003), hours worked should enter the VAR in levels.
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procedure does not allow a researcher to distinguish between promising and unpromising

classes of models" (CKM, 2008, p. 1339). In contrast, Christiano Eichenbaum and Vig-

fusson (2006), (henceforth CEV), show that these VARs are reliable in that they only

infrequently reject the true data generating process. Although these researchers reach

opposite conclusions, they focus almost exclusively on whether VARs have adequate size

properties. However, in assessing a statistical test, we also care about power: the ability

of the test to reject a false hypothesis. A key contribution of this paper is to assess the

power properties of long-run VARs.

Beyond responding to the concerns of these other papers, we further contribute to

the literature by making concrete proposals for how to improve inference. We show that,

compared with testing the impact response, testing the shape of the response is much

more informative about what models are false. Furthermore, studying other variables

such as investment (for flexible price models) or real wages (for sticky price models) can

also be more informative. More generally, our results suggest that, to construct more

powerful tests that are able to discriminate across models, it is best to examine those

responses over which the models differ most, which often means going beyond the sign

of the impact response of a particular variable. Given the results on the power and size

properties of long-run VARs, we conclude that these VARs are useful for discriminating

between the DSGE models that we consider.

These results may seem to contradict Faust and Leeper (1997) who argue that, under

the long run assumption, any test of an impulse response will reject false models only at

a rate equal to the rejection rate of the true model. (Faust and Leeper 1997 p. 347).

However, Faust and Leeper’s claim of such weak power is only true when the possible

set of data generating processes (DGP) is very general. Faust and Leeper themselves

note that these long-run VARs would have better power properties, if the set of DGPs

was suitably restricted. For example, assuming that the DGP must be a finite-ordered

VAR with maximum lag length K (where K is a fixed and finite number) would be a

sufficient restriction to imply that these long-run VARs do have power greater than size.

However, most DGE models imply that the data generating process is an infinite-order

VAR (see the current paper’s Section 4), as such Faust and Leeper’s result of a long-run

VARs having power for finite-ordered VAR is not applicable. As such, the current paper

expands the set of models for which long-run VARs have power. (See Section 4 for more

details.)

The next two sections describe how to estimate a long-run VAR and the DSGEmodels

that are used as data generating processes. These sections should be familiar to readers of

the Erceg, Guerrieri, and Gust (2005) [EGG], CKM, and CEV papers. Section 4 reviews

the challenges resulting from adopting the long-run identification assumption. Section 5

presents the simulation results for flexible price models. Section 6 presents the results

for sticky price models. Section 7 reports on an empirical application of the methods to

U.S. data. Section 8 concludes.
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2 Estimating A Vector Autoregression with A Long

Run Identification Assumption

Here, as in Galí (1999), a technology shock is identified as a permanent shock to pro-

ductivity. These shocks and resulting impulse responses are computed in the following

manner. Consider a vector of variables  that consists of  elements. The first element

is the growth rate of labor productivity, denoted by ∆. The next  − 1 elements are
 the other variables to be studied. As such  can be written as

 =

µ
∆


¶
 (1)

The time series for  can be described by the following structural vector autoregres-

sion (VAR) :

0 = ()−1 +

µ



¶
(2)

The fundamental shocks  and  (where  has  − 1 elements) are assumed to be
independent, have mean zero, and have variances equal to one. Given this structural

VAR, we can invert 0 to construct the reduced form VAR,

 = −10 ()−1 +−10

µ



¶
 (3)

where the reduced form VAR coefficients −10 () are denoted by () and the reduced

form errors are denoted by  For notational simplicity let  denote −10 . The mapping
between structural shocks and reduced form errors is

 = 

µ



¶
 (4)

Denote the variance covariance matrix of  
0
 by  and note by assumption that

 equals  0 As such the reduced form is the following:

 =  ()−1 +  (5)

Galí (1999) identifies the technology shock by assuming that only the technology

shock  can have a permanent effect on the level of productivity . All other shocks

are assumed to have no long-run effect. This restriction is referred to the exclusion

restriction as it excludes the other shocks from having any long run effect on the level of

productivity. This restriction imposes a restriction on the moving average representation

of the data. Denote the moving average representation by:

 = [ −()]
−1



µ



¶
 (6)
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The exclusion restriction implies that each element in the top row of the sum of moving

average coefficients equals zero except for the first element. In other words, we have the

following restriction

[ −(1)]
−1

 =

∙
11 0

numbers numbers

¸
 (7)

where 0 is a row vector. To identify 11 requires the additional restriction that a positive

technology shock increases labor productivity which implies that 11 is positive. No

additional restrictions are required.

To compute the dynamic effects of   we require 1   and 1, the first column of

. The symmetric matrix,  and the ’s can be computed using ordinary least squares

regressions. However, the requirement that  0 =  is not sufficient to determine a

unique value of 1 There are many matrices,  that satisfy  0 =  as well as the

exclusion and sign restrictions. However, in all cases, the first column, 1, of each of these

matrices is the same. In particular, we can compute a  that satisfies these restrictions

as the following

 = [ −(1)] (8)

where  is the lower triangular matrix such that

0 = [ −(1)]
−1

 [ −(1)0]−1 =  (0)  (9)

In equation (9),  () denotes the spectral density of  at frequency  that is implied

by the  order VAR. The use of the spectral density at frequency zero to identify a

technology shock is closely connected to the critique of Faust and Leeper (1997) and will

be discussed in a subsequent section.

3 Models

The DSGE model presented here is very similar to the model presented in Christiano,

Eichenbaum, and Vigfusson (2006). The model, however, has two additional features.

The first is the addition of habit persistence in the utility function. Thus, the previous

period’s level of consumption affects current utility. Habit persistence results in a slower

response of consumption. The second feature is adding investment adjustment costs to

the model. Increasing investment is expensive and therefore an economic agent will have

an incentive to smooth out investment. Christiano, Eichenbaum, and Evans (2005) use

a similar specification to generate improved dynamics in a sticky price model.

3.1 The Utility Function

The model has a representative agent who chooses consumption  and the fraction of

time spent working  to maximize utility, where utility is defined as



∞X
=1

¡

¡
1 + 

¢¢
(log (+ − +−1) +  log (1−+))  (10)
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The coefficient  describes the degree of habit persistence in the model. The parameter

 is the discount rate,  is the growth rate of population, and  controls the trade-off

between consumption and leisure. The agent maximizes utility subject to the budget

constraint that consumption and investment  must equal the return  from capital 

and income from working (1−  ):

 + (1 + )  ≤ (1−  ) +  (11)

The capital accumulation equation is the following

¡
1 + 

¢
+1 = (1− ) +

µ
1− 

µ


−1

¶¶
 (12)

where  is the function that determines the cost of changing investment. The value of

 and its first derivative are zero along a steady state growth path and the parameter 

denotes the second derivative of  evaluated in steady state.

The production function is standard

 = 
 ()

1−
 (13)

where  denotes the level of technology. The economic resource constraint is

 =  + 

There are three shocks.

log  =  + 

 (14)

  = (1− ) ̄  +  −1 + 

 (15)

 = (1− ) ̄ + −1 + 

 (16)

where  equals the growth in technology −1. Each of the shocks   

 and  is

independent and identically distributed with mean zero and variance equal to one. The

values of   ̄ and ̄ are the average values of the shocks. One could describe the

shocks   and  as labor and capital tax rates respectively. However, estimation that

matches the model to observed non-tax variables implies that these variables  +1 and

+1 are much more variable than observed labor and capital tax rates. The values of

the auto-regressive parameters  and  are both constrained to be less than one.

3.2 Sticky Price Model

The simulation reported in Section 6 are done with the flexible price model described

above. In Section 7, we conduct simulations with a sticky price model, and we briefly

describe here how it modifies the flexible price model.
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We assume that prices are set in Calvo-style staggered contracts similar to Erceg,

Henderson, and Levin (2000). In particular, there is a continuum of differentiated goods,

, indexed by  ∈ [0 1] that are combined to produce the “output index” according to:

 =

µZ 1

0


1

1+

 

¶1+
 (17)

with   0. The output index is produced by a representative firm whose demand for

each of the differentiated goods is given by:

 =

µ




¶−(1+)


 (18)

where  denotes the price of differentiated good  and the aggregate price index, ,

satisfies

 =

µZ 1

0


−1


 

¶−
 (19)

Each of the differentiated producers have the production function:

 = 
 ()

1−
 (20)

Capital and labor are completely mobile across these producers so that all firms have the

same marginal cost:

 =


(1− )
 (21)

A differentiated goods producer is a monopolist who face the constant probability, 1− ,

of being able to reoptimize its price. This probability is assumed to be independent across

time and firms. When firm  is able to reoptimize its contract price, the firm maximizes:



∞X
=0

+
 ( −+)+ (22)

where + is the state-contingent discount factor.
3

The inclusion of sticky prices requires us to specify a monetary policy rule. We assume

that the central bank adjusts the quarterly nominal interest rate in response to inflation

and the output gap:

 = −1 +  + ̃ +  (23)

where  = log(


−1
), ̃ is the log-level of output expressed as a deviation from steady

state, and  is a monetary policy innovation.
4 The monetary policy innovation evolves

as

 =  + 



3For convenience, we have suppressed the state-dependent nature of + . In equilibrium, + is

equivalent to the price a household pays for a claim in period  that pays one dollar if the corresponding

state occurs in period + , normalized by the probability that state occurs.
4The constant term in the policy rule has been suppressed for simplicity.

6



where  is independent and identically distributed with mean zero and variance equal

to one.

In the sticky price model, we also allow for a shock to government spending. To do

so, we modify the resource constraint so that  =  +  + where  =  and 
evolves according to:

 = (1− ) + −1 + 

  (24)

In the above,  denotes the steady state value of  and 

 is independent and identically

distributed with mean zero and variance equal to one.

4 The Problem with Long-Run VARs.

There are two problems when you estimate a long-run VAR using data simulated from a

DSGE model. The first problem is that the true data generating process is not a finite-

ordered VAR; rather, it is a infinite-ordered VARmodel. This problem is applicable to all

VARs and was the focus of the criticism by CKM. The second problem, applicable to the

estimation of long-run VARs, is the challenge in estimating the spectrum at frequency

zero which is the basis of the Faust and Leeper critique.

To understand the first problem, express the log-linear solution of the DSGE model

as the following equations

 = −1 + (25)

 =  (26)

where  are the model’s state variables (such as capital),  are the fundamental shocks,

and  are the model’s observed variables (such as investment and hours worked). The

autoregressive nature of the first equation is without loss of generality as we can stack

variables in the state variable vector (such as +1  and −1).
Given this system of equations, one can derive the following infinite-ordered VAR for

the observed variables  (CEV 2006). The data generating process for  is

 =  ( −)
−1

−1−1 +  (27)

where  is the lag operator and the following matrices are defined

 =  (28)

 =
¡
 −−1

¢
 (29)

Two additional assumptions are required for equation (19) to hold. The first assump-

tion is that the matrix C be square and invertible. For  to be square requires that

there must be as many economic fundamental shocks as there are observed variables. If
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there were fewer economic shocks than observed variables, then the variance covariance

matrix of  would be singular.
5 The second assumption is that   converges to zero as

 goes to infinity. This assumption rules out explosive solutions. If we assume that  ()

denotes the infinite-ordered polynomial for the autoregressive terms on , then we have

that

 () =  ( −)
−1

−1 (30)

Given this definition, the th term of  ()   equals  −1. For the system to
be non-explosive, the value of   must converge to zero as  goes to infinity. Satisfying

this requirement would imply that  converges to zero.

This infinite-ordered VAR is typically approximated by a finite order VAR ̂ () of

order  where ̂ equals zero for all  greater than . There has been some debate about

the ability of a finite ordered VAR to approximate the dynamics of the infinite order

VAR.6 The short-run identification results in CEV (2006), however, suggest that a finite-

ordered VAR can do fairly well at capturing the short-run dynamics. The individual

estimated VAR coefficients
n
̂

o
=1

are close estimates of the individual population co-

efficients {}=1 and, with a relatively small value of , do a good job of minimizing the
variance of the one-step ahead forecast errors. However, as was described in Sims (1972)

and further discussed in CEV, the sum of the estimated coefficients ̂ (1) (or equivalentlyP

=1 ̂) may not be close to the true sum  (1) (
P∞

=1).

An inability to match the long-run sum is a particular problem for the long-run iden-

tification assumption since determining C, the mapping between reduced form shocks 
and fundamental shocks , requires knowing the matrix D defined previously in equation

(9),

0 = [ −(1)]
−1

 [ −(1)0]−1 =  (0) 

Because the value of  is a function of (1) the inability of the sum of the finite-order

VAR’s coefficients ̂ (1) to match  (1) is a problem particular to the long-run identifying

assumptions.

As was mentioned in the introduction, a discussion of power of long-run VARs may

appear pointless given Faust and Leeper’s proposition that any test of an impulse re-

sponse identified with a long-run restriction has significance level greater than or equal

to maximum power. (Faust and Leeper 1997 p. 347). The identification of the long-run

VAR depends on knowing the matrix D. The matrix D is a function of the spectrum

at frequency zero and knowing the spectrum at frequency zero is what underlies Faust

5When there are more shocks than variables, one can still derive a VAR. However, identifying all the

shocks becomes more difficult. See Sims and Zha (2006) for more details.
6The debate over using a finite VAR is present in the aforementioned EGG, CKM and CEV papers.

Because of this debate, some have suggested estimating instead models with both autoregressive and

moving average components (VARMA models). However, as was described in Kascha and K. Mertens

(2009), the difficulties in estimating these VARMA models suggests that they do not offer much im-

provement.
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and Leeper’s claim about the problems with long-run VARs. As was discussed in Faust

(1999), the confidence interval on a single point on the spectrum is unbounded because,

under the assumption of a very general data generating processes, one can not rule out

a spike at that single point. If one can restrict the DGP sufficiently to rule out these

spikes, then the spectrum and hence the matrix D will be better behaved. For example,

Faust and Leeper themselves note that fixing the DGP to be a finite-ordered VAR with

maximum lag length K would be a sufficient restriction such that long-run VARs do have

better power ptroperties. However, this restriction is not applicable when the DGP is a

DSGE model since this class of models generally yields infinite-ordered VARs.

In the following sections, the set of data generating processes (DGP’s) is restricted to

the set of infinite-ordered VARs that arise from these DSGE models. For these DGPs,

we will show that long-run VARs do have power to reject false null hypotheses at a rate

greater than the size of the test. Although these DSGE models are not fully descriptive

of the data, these models being infinite ordered do offer additional insight beyond that

learned from the fixed lag VARs. As such, our paper’s results expand the set of DGP’s

for which the long-run VARs do have power.

5 Model Calibrations and Simulation Experiments

To simulate data from the model requires values for the models parameters. To make the

results reported here comparable to CKM (2008) and CEV (2006), most model parame-

ters are set at values that they use. See Table 1 for the values of
©
          

ª
.

In the first set of simulations, the values of habit parameter  and the investment adjust-

ment costs parameter  are set equal to zero. For notional convenience, this benchmark

flexible price model that has no real rigidities will be referred to as the RBC model.

In subsequent simulations, we simulate data from a model with the coefficient of habit

persistence  and the degree of investment adjustments costs  fixed at the values ( = 07

and  = 3) that are reported in Christiano, Eichenbaum and Evans (2005).

As in CEV(2006), the variance and auto-correlation of the model’s shocks are esti-

mated by standard maximum likelihood methods. Define the observed vector of variables

to be the following

 =

⎛⎝ ∆ −∆


 − 

⎞⎠ (31)

where ∆ − ∆ is the growth rate of labor productivity,  is the level of per capita

hours worked and  −  is the ratio of investment to output expressed in logs. All

data are from the United States for the period 1959 to 2001. Labor productivity and

hours worked are measured for the business sector. The ratio of investment to output

is measured using the nominal share of total investment in GDP. Given these observed

variables and the model structure implied by equations (25) and (26). The model can

then be estimated by applying the Kalman filter approach in Hamilton (1994, Section

9



13.4). Estimated model coefficients match those found in CEV (2006) and are reported

in Table 1.

5.1 Simulation Evidence With Data Generated from a RBC

model

All simulations are done 2000 times with a sample size of 200 observations. For each

simulated data set, we estimate a three variable VAR where the three variables are the

growth rate of labor productivity, the log level of per capita hours worked and the ratio

of investment to output expressed in logs. For each VAR, we fixed the lag length at

four. Based on past experience, applying more sophisticated algorithms for choosing

lag length does not provide substantially different results. By applying the long-run

identifying assumption, for each data set, we identify the responses to a one-standard

deviation increase in technology.

For each simulated data set, we estimate a bootstrapped standard error by simulating

the estimated VAR one thousand times where the vector of economic shocks at time 

are drawn with replacement from the estimated set of residuals and the starting values

come from that particular data set. The bootstrap standard deviation is estimated as

the sample statistic coming from the distribution of the bootstrapped impulse responses.

Figure 1 reports, for the benchmark VAR estimated using data simulated from a RBC

model, the response of hours worked to a permanent shock to labor productivity with

size equal to one-standard deviation. The gray area indicates the sampling distribution

of the estimated impulse responses. The edges of the gray area indicate the 5th and

95th percentile of all the estimated impulse responses. These intervals are wide which is

typical of structural VARs that are identified with a long-run restriction (see CEV 2006).

Figure 1 also reports the true impulse responses from several parameterizations of

flexible price DSGE models that have real rigidities in the form of investment adjustment

costs and habit persistence. These other responses all lie within the gray area, which, as

previously mentioned, indicates sampling uncertainty. One, therefore, might be tempted

to conclude that these impulse responses are unable to discriminate between the different

parameterizations and, as such, that the statistical test of the hours response has poor

power.7 The rest of this paper will show that a conclusion that these long-run VARs

have poor power would be overly pessimistic.

Figure 2 reports a scatter plot of the estimated impact response of hours to a tech-

nology shock versus the corresponding estimated bootstrapped standard error for each of

the 2000 simulations from the benchmark flexible price model. For any given simulation,

we can determine whether an econometrician observing only that simulation would reject

7The argument on page 1339 in CKM seems to be a claim of poor power. However, CKM never

report the estimated statistical sampling uncertainty that a researcher would estimate when faced with

only a single data set. Rather they just report the distribution of the point estimates. In terms of our

Figure 2, they report the distribution of the values on the x-axis but do not calculate the values on the

y-axis.
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the true null hypothesis that the hours response on impact matches the response from a

RBC model. If the econometrician had assumed that the estimated impulse response has

an asymptotic normal distribution centered around the true response, then she would

use a standard critical value of 2 and falsely reject the true null hypothesis 18 percent of

the time. Given that the rejection rate is greater than the nominal size of 5 percent, we

calculate the critical value (2.8), where an econometrician observing only a single data

set would correctly fail to reject the null hypothesis 95 percent of the time and reject the

true model only 5 percent of the time.8

5.1.1 Looking At Power

Figure 3 reports the same scatter plot of estimated impulse responses and standard

errors. However, Figure 3 reports the results for testing whether the estimated impulse

response matches the response from a DSGE model with high levels of habit ( = 07)

and investment adjustment cost ( = 3). Even with the size-corrected critical values, the

false model is correctly rejected 32 percent of the time. Using the standard critical value

would lead to an even greater rejection rate of 53 percent. These results illustrate that

one can find model parameterizations with much higher rejections rates than the worse

case that is analyzed by Faust and Leeper.

Reporting the equivalent of Figure 3 for all possible parameterizations is not feasible,

as such, rejection rates are summarized by Figure 4 which report for low degrees of habit

(Figure 4a) and high degrees of habit (Figure 4b), the rejection rates for different values

of  The rejection rates for the test of the impact response are indicated by the solid

lines and are labelled Sign, reflecting this test’s close relationship with previous papers

that reported the distribution of the sign of the impact response. When  equals 0 and

 equals 0, then the rejection rate for the test of the impact response is the likelihood

of rejecting the true model and, as we are using a size-corrected critical value, equals 5

percent by construction. When  equals 3 and  equals 0.7, using the same size-corrected

critical value, the rejection rate is 32 percent.

As can be seen in Figure 4, the test is much more likely to reject a false null hypothesis

than a true null hypothesis. As such, the evidence implies that, by restricting the model

to a plausible set of DSGE models, we gain power relative to the worse case scenario

of Faust and Leeper. Moreover, the rejection rates increase with  and  However,

even for parameterizations with a fairly large degree of habit persistence and investment

adjustment costs, the test has a size-corrected rejection rate of under 40 percent.

To be able to discuss the usefulness of these long-run VARs, we need to determine

whether the rejection rates reported in Figure 4 are high or low. Because statistical

power is only infrequently reported, for comparison purposes, it would be useful to have a

benchmark from the literature on statistical testing of DSGE models. One such statistic

8An alternative approach would be to experiment with the various proposed modifications of how

to construct confidence intervals. However, as many different methods have been proposed, we leave

explorations of the properties of these different methods for future work.
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is the correlation of output growth.9 The inability of the RBC model to match the

correlation of output growth has been an important statistic in casting doubt on the

basic RBC model. Papers that discuss the correlation of output growth include Cogley

and Nason (1995) and Christiano and Vigfusson (2003).

Results for this unconditional statistic help put the performance of the impulse re-

sponse analysis in context. Figure 4 also reports results for the output correlation (the

dashed lines labelled Correlation). Given the use of a size-corrected critical value, the

test of the correlation statistic rejects 5 percent of the time when  and  both equal

zero. The power of these correlation statistics are somewhat better than the impulse re-

sponses. The rejection rates increase as both  and  increase. With no habit persistence

in consumption, the rejection rates using the correlation are about 20 percent for models

with moderate or high degrees of investment adjustment costs . For models with a high

degree of habit, the correlations reject the false models much more frequently.

Overall, this evidence suggests that the power of testing using the correlation is better

than testing using just the impact response of hours worked. The rest of this paper shows

that other applications of VARs can be more informative. In particular, Figure 4 has

an additional set of lines that, for certain parameterizations, have better rejection rates

than the rejection rates from the correlation test. The next section describes these lines.

5.2 Shape of Hours

In this section, we show that, compared to a test of the impact response, a test of the

shape of the response of hours worked to a technology shock can more frequently reject

false models. Studying the shape of impulse responses has a rich tradition in the empir-

ical VAR literature. For example, based on VAR evidence, many variables respond with

a delay to monetary policy shocks. To match these delayed responses, researchers aban-

doned frictionless, New-Classical models that implied immediate responses and adopted

models with rigidities. (For a discussion of these issues, see Woodford 2003, p. 173).

Figure 5 reports, for data generated from a standard RBC model, a scatter plot of the

response of hours on impact and the change in the response six periods later.10 Around

9The confidence intervals for the correlation statistic were constructed using the standard method

from the Matlab Statistics Toolbox. Confidence intervals were constructed using the result that, for

the correlation statistic  the valu e of 1
2
log
³
1+
1−

´
is approximately normal with a variance equal to

1
−3 . As with other statistics reported in this paper, the critical value for testing the correlation was
size-corrected.
10The choice to looking at the response six periods later is somewhat arbitrary. One could imagine

testing instead the period that creates the maximum change. However, a result-driven method such as

this could result in exaggerating the response in a fashion analogous to the difference between a standard

Chow test for parameter instability and the supremum Wald test of Andrews.

An additional extension would be to test the vector of responses between impact and many periods

later. This route was not taken here in order to minimize the size of the V matrix that needed to be

stored. However, an additional concern is that this larger test may be overly precisely and reject models

that have the same rough shape as the empirical responses but that do not match period by period.
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each of these responses, one could construct a confidence ellipse. Assuming that these

responses are drawn from a multivariate normal distribution, then the formula for the

confidence ellipse can be easily derived from a simple Wald test. Given an estimated

vector ̂ and a variance covariance matrix for ̂ denoted by ̂ , then a point  lies in the

95 percent confidence ellipse if  satisfies the following inequality

[− ̂]
0
̂ −1 [− ̂]  95 (32)

where 95 is the critical value. According to standard asymptotic theory, the statistic is

distributed chi-squared with 2 degrees of freedom. To estimate the variance-covariance

matrix ̂ , weuse the same method as we used to estimate the standard error. For

each simulated dataset, the variance-covariance matrix ̂ is estimated using a bootstrap

simulation where the DGP is the estimated VAR using that specific dataset. As was

done for the impact responses, the test needs to be size-corrected. In the simulations

the value of 95 is 10 rather than the standard value of 6. To give some degree of the

magnitude of the correction, Figure 5 reports, for one single simulation, the estimated

confidence intervals using the two different critical values. In either case, one would fail

to reject the true null hypothesis that the response matches the response from the RBC

model (the triangle). Although, the size-corrected confidence set is much wider than the

non-size corrected interval, for this particular simulation, one would reject the false null

hypothesis that the response matches the response from a model with high degrees of

habit and investment adjustment costs (the square).

Returning to Figure 4, we can compare the power properties of the shape test versus

the power properties of the tests of the impact response and the correlation. The rejection

rates for tests using the shape of hours are much better than the rejection rates for tests

using the sign and are comparable to rejection rates testing the correlation of output

growth.

5.3 Investment Response

As was mentioned in CEV, the variance of hours explained by technology shocks is very

low. In the benchmark parameterizations studied here, technology shocks account for

less than 1 percent of the variance of hours. However, technology shocks do account

for 22 percent of the variance of the ratio of investment to output. As such, a natural

question to ask is whether looking at the response of investment rather than hours is

more informative. We report below that the investment response does appear to be more

informative.

Figure 6 plots the impulse responses estimated for investment from the same bench-

mark three variable VAR (with variables: labor productivity growth, hours worked and

investment to output ratio). The various model responses again lie within the large gray

area. Also of note is that, unlike with hours, the investment response is not monotoni-

cally increasing with respect to both habit and investment adjustment costs. For a given

degree of habit persistence, the size of the investment response declines as the investment
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adjustment costs increase. However, for a high degree of habit persistence, the invest-

ment response is larger than would be the case with a low degree of habit. The economics

behind this reversal is that, with a high degree of habit, the utility maximizing behavior

is to invest more in order to smooth consumption.

Figure 7 reports the power properties of the two tests of investment and also repro-

duces from Figure 4 the rejection rates when one tests using the correlation of output,

(the dashed lines). As indicated by the lines with circles, the shape of the investment

response (again measured using the impact response and the response six periods later)

seems more useful than the impact response (the solid line). Furthermore, both tests

appear to be quite useful in discriminating between models.

5.4 Changing the True Data Generating Process

For the results reported above, the true data generating process is the RBC model.

Given data simulated from the RBC model, we reported the rejection rate of the false

null hypothesis that the data was generated from models with real rigidities. Of course,

we are also interested in the opposite case where the data are simulated from a model

with real rigidities and the false null hypothesis of the RBC model is tested. Reversing

the role of the two models is particularly relevant as most empirical work favors models

with various degrees of adjustment costs. (See ACEL and Smets and Wouters (2003) for

examples).

For this exercise, we generate data from the model with high investment adjustment

costs and habit persistence with values of  and  set at the values estimated in Christiano,

Eichenbaum and Evans (2005). Using data generated from this model, the statistical tests

frequently reject the standard RBC model. The rejection rates are much greater than

the rejection rates observed when data are simulated from the RBC model and the test

is of the model with high adjustment costs.

Figure 8 reports the impulse response of hours worked. Given the high level of costs

associated with adjusting either the level of consumption or investment, a technology

shock actually drives down hours. The improvement in productivity causes the con-

sumer to increase leisure rather than increase consumption or investment. The average

estimated response is somewhat biased away from the true response. However, using the

standard critical value, the rejection rate for testing the impact response compared to

the true model impact response is 24 percent which is similar to the results presented

above. As can be seen in Table 2, when using the size-corrected critical value, the power

of the test to reject the impact response from the now false RBC model is 58 percent.

Comparing these results with the results from Figure 4, the test of the impact response

is much more powerful when the data are simulated from the model with real rigidities

than when the data are simulated from the RBC model. Table 2 reports the power of

testing the shape of the hours response using the size-adjusted critical values. By looking

at the shape of the hours response, the false RBC model is rejected more than 90 percent

of the time. Table 2 also reports the results for testing the investment response. For data
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simulated from this model with high real rigidities, as was the case for data simulated

from the RBC model, the size and power properties are better for testing investment

than testing hours. Using the investment response, one can almost always reject the

RBC model. Finally Table 2 also reports a test using the correlation of output growth.

Here too the statistic has a high degree of power.

Table 3 and Table 4 summarizes across several different parameterizations to reject

the RBC model. For low levels of habit, testing the initial period of the hours response is

not very informative but testing the shape of the hours response can be very informative.

When there is no habit, the initial investment response is also not very informative.

In models with a higher degree of habit, the initial investment response is much more

informative.

Table 4 presents the values of the critical values that result in tests with correct size.

For each test statistic, the critical values are fairly constant across parameterizations. As

such, it seems reasonable to suppose that using the average critical value from this table

is a good way to size correct when the true data generating process is unknown.

6 Simulation Results For Sticky Price Models

In this section, we present results for a model with sticky prices with a moderate degree

of price stickiness ( = 075), habit (b=0.4), and investment adjustment costs ( =

2). Given these model parameters and other calibrated values reported in Table 1, we

estimated the sticky price model using the U.S. data. Using these coefficient estimates

which are also reported in Table 1, we simulate data from this sticky price model and

then look at rejection rates for various models. In this section, we focus on the Calvo

adjustment parameter  which determines the degree of price stickiness.

Table 5 reports results for a four variable VAR of labor productivity growth, hours

worked, the investment-to-output ratio and real wages minus labor productivity (i.e. we

impose the cointegrated relationship between real wages and labor productivity). As

with the previous section, we did have some problems with modest size distortion and,

as such, had to increase critical values to get the size of the test right, resulting in

wider confidence intervals. The rejection rates are reported for various values of , which

controls the degree of price stickiness. Low values of  are associated with less sticky

prices.

High values of adjustment costs imply that regardless of the degree of price stickiness,

it is hard to differentiate amongst models using data on either hours worked or investment

adjustment costs. The responses by hours worked and investment are similar for high

values of investment adjustment costs, regardless of the value of  or . One however,

can get better rejection rates by looking at wages. The rejection rates are much higher

for values of  that are far from the true DGP.

The results from this section support the message from the previous section. In terms

of discriminating amongst model parameterizations, it is best to examine those responses

over which the parameterizations differ most. As such, to discriminate amongst models
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that differ in the degree of habit persistence or in the adjustment costs of investment,

the investment response is most informative. To discriminate amongst models that differ

to the degree of nominal rigidity, the wage response is most informative.

7 Empirical Application

As an empirical application, we take a VAR similar to that estimated in Christiano

Eichenbaum and Vigfusson (2003) and ask what parameterizations can be ruled out and

which can be allowed.

The VAR is the same three variable system used above in terms of labor productivity,

hours worked and the ratio of investment to output. The difference is that rather than

the data being simulated from a RBC model, the data are the empirical data from the

United States. In particular, productivity is measured as hourly labor productivity in the

business sector, hours worked is per capita business hours worked, and investment is the

ratio of private nonresidential investment to GDP. In this section, hours enters the VAR

in levels. The discussion of how to treat hours and other low frequency movements in

estimating these VARs is beyond the scope of the current paper and is instead addressed

in Christiano Eichenbaum and Vigfusson (2003). The sample period is 1954 to 2001.

Empirical responses are reported in Figure 9a, 9b, and 9c. In addition, for comparison

sake, model impulse responses are reported for a few model parameterizations. A 95

percent confidence interval is constructed for the empirical responses using the estimated

bootstrap error and a size-adjusted critical value that is the average of the values reported

in Table 5. Given the width of the confidence interval, we fail to reject most of the models.

We can reject the model with large real rigidities. However, models with only slightly less

real rigidities would not be rejected. In contrast, Figure 10a, shows that, even when using

the large size-adjusted critical value, a test based on the shape of the hours response does

lead to a clear rejection of the large real rigidities. Likewise, the investment response

leads us to reject a model with no real rigidities. Hence, although the sign is almost

uninformative in this application, the shape of the responses is informative.

Based on these results, the most promising way to model the response to a technology

shock is to allow for delayed hump-shaped responses to the technology shock. Future work

will be directed towards determining whether these delayed responses are best modeled

as the result of nominal or real rigidities.

8 Conclusions

In order to discriminate between macro models, a statistical test should infrequently

reject true models and frequently reject false models. The earlier literature focused on

how frequently one would reject true models. These results are suggestive that long-run

VARs have the potential to be useful tools. However, we could not conclude that these
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tests are actually useful without answering the equally important question of how often

one would reject false models. The current paper does address this question.

Impulse responses from long-run VARs can reject false models. As expected, these

rejection rates increase the further away the false model is from the true data-generating

model. In addition, these rejection rates vary depending on what variables are studied.

Overall, however, this paper shows that these long-run VARs can be informative about

which models are to be preferred. For the models studied here, testing the shape is a more

powerful test than simply looking at the sign of the response. In addition, relative to

an alternative statistical test based on sample correlations, we find that the shape-based

tests have greater power.

These results should encourage us to find creative and new ways to test our models.

The conclusion is not to abandon our existing tools but to find ways to improve their

use. Already several papers have explored methods to improve estimation with the

long-run identification assumption including Feve and Guay (2009), Gospodinov (2008),

Kascha and K. Mertens (2009), and E. Mertens (2008). Using these alternative methods,

researchers may be able to improve on the results reported here. Overall, given these

results on the power and size properties of long-run VARs, we conclude that these VARs

can be useful for discriminating between macro models and, therefore, should continue

to be used in developing and testing business cycle theory.
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A Understanding why the size correction is needed

To get the size correct, we need a larger critical value than has been used in applied

literature. This section shows that this need for a larger-than-standard critical value

is directly related to the persistence of hours worked. As has been discussed in the

literature, the sampling properties of the impulse responses identified from a long-run

VAR will be non-standard if hours worked has a unit root (CEV 2003) or near-unit

root (Gospodinov 2008). Although hours worked is stationary in the RBC model, hours

is highly persistent. In particular, consider the results from estimating the following

covariate-augmented Dicky Fuller test which was featured in CEV.

∆ = + −1 +
X

=1

∆− +
X

=1

 −

where − are other covariates. (in the current application it is just productivity growth).
An F-test of whether  equals zero is both a unit root test and also a test of whether

hours worked −1 is a weak instrument for hours growth ∆
11

The top panel of Figure A reports the distribution of the f-test.12 For most of the

simulated data sets studied here, an econometrician would actually fail to reject the

null hypothesis that hours worked is a weak instrument. The distribution of the F-test

illustrates how the RBC model fails to model the dynamics in the actual U.S. data.

In the actual U.S. data, the F-test has a value well about 10, which is quite unlikely

for the RBC model. Hence, the average simulation from the RBC model is actually

a much less suitable data generating process than is actual U.S. data for applying the

long-run VAR estimation. Even though hours worked is persistent, first differencing

hours does not solve the problem. As was shown before in EGG, CEV (2003) and CKM,

first-differencing hours results in a very biased estimate of the hours response. As was

documented in Gospodinov (2008), first-differencing hours can remove an important low

frequency comovement between hours and labor-productivity growth. As such, even

when hours is very persistent, estimating the VAR in levels works better than estimating

the VAR with hours in first differences.

In the bottom panel, Figure A reports a scatter plot of the f-statistic for weak instru-

ments relative to the t-statistic of testing the true hours response. Clearly the distribu-

tion of the t-statistic depends on the value of the f-statistic. Table A reports the ninety

fifth percentile of the absolute value of the t-statistic conditioning on the value of the

f-statistic. This table suggests a simple rule to correct the t-statistic. If the F-statistic

is less than 10, then use a critical value of 3. If the F-statistic is more than 10, then use

a critical value of 2. This simple rule of thumb approximates a more complex procedure

that would adjust the confidence interval depending on the strength of the instruments.

11For VARs with more than two variables, we will have to use a multivariate test like the Cragg Donald

test to assess the weakness of all the instruments.
12These results are reported for 40,000 simulated data sets.
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Tables
Table 1: Model Parameter Values

Calibrated

 09814  25

 033  10114 − 1
 1− (1− 06)14  101614 − 1
 03   0242

 02  075

 075  15

 0125

Estimated for flexible price model

 000968

 000631  09994

 000963  09923

Estimated for sticky price model

 00125

 00195  09663

 00382  07195

 00026695  019437

 00512  08543

Table 2: Size and Power when DGP is DSGE Model with High Adjustment Costs

Test Rejection Rate Critical

RBC Model

Size Adjusted*

True Model

Not-size Adjusted
Value

Impact Hours Response 58 23 3.2

Shape of Hours Response 99 29 16.5

Impact Investment Response 100 10 2.4

Shape of Investment Response 100 13 9.84

Correlation of Output Growth 100 10 2.55

*Rejection Rates are for the size-adjusted critical values given in column (iii)
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Table 3: Rejection Rates of the RBC Model (Percent)

Model Test Statistic

Parameters Hours Investment Output

b  Sign Shape Sign Shape Correlation

0 0.5 5 81 12 100 0

0 1.5 8 100 21 100 1

0 3 11 100 24 100 0

0.5 0.5 20 43 70 88 79

0.5 1.5 33 100 85 100 92

0.5 3 41 100 87 100 92

0.7 0.5 27 25 83 58 95

0.7 3 58 100 89 100 100

Results are reported for tests done on data simulated using

the macro model described in the paper with parameters in the

first two columns on the left. For each set of model parameters,

2000 simulations are done. For each parameterization, size-adjusted

critical values are used to test the false null hypothesis that the data

were generated by an RBC model.

Table 4: Size Adjusted Critical Values

Model Test Statistic

Parameters Hours Investment Output

b  Sign Shape Sign Shape Correlation

0 0 3.20 16.5 2.4 9.84 2.55

0 0.5 2.96 10.80 2.36 8.38 2.96

0 1.5 2.81 10.60 2.27 8.36 3.11

0 3 2.75 9.93 2.31 8.78 3.06

0.5 0.5 2.77 10.56 2.36 8.12 2.64

0.5 1.5 2.83 12.55 2.32 9.06 2.64

0.5 3 2.87 13.42 2.40 9.34 2.63

0.7 0.5 2.87 11.65 2.52 9.13 2.56

0.7 3 3.20 16.47 2.39 9.85 2.55
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Table 5: Rejection Rates (in Percent) For Various Degrees of Price Stickiness 

Other parameters b = 0.4  = 2

 0.15 0.35 0.55 0.75* 0.9

Hours Impact 2 2 3 5 8

Hours Shape 2 2 3 5 8

Investment Impact 5 5 5 5 8

Investment Shape 17 12 9 5 10

Wage Impact 32 20 11 5 4

Wage Shape 22 13 8 5 4

Other parameters b = 0.4  = 0

 0.15 0.35 0.55 0.75 0.9

Hours Impact 9 3 11 100 100

Hours Shape 13 3 13 100 100

Investment Impact 73 27 19 100 100

Investment Shape 61 23 26 100 100

Wage Impact 24 17 6 29 94

Wage Shape 17 11 6 43 100

Other parameters b = 0.8  = 4

 0.15 0.35 0.55 0.75 0.9

Hours Impact 5 5 6 8 9

Hours Shape 5 5 6 7 9

Investment Impact 5 5 5 5 6

Investment Shape 19 13 10 8 9

Wage Impact 37 23 14 6 5

Wage Shape 27 16 10 6 4

* denotes DGP parameterization. Critical Values chosen to insure correct size.
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Table A: Critical Values of The T-statistic of Impact Response of Hours

Conditional on a Test of Hours Being a Weak Instrument

F-statistic of Average Absolute Value Fraction of

Hours Being A Bias of T-statistic Observations

Weak Instrument 95th Percentile (percent)

(0,1) 1.31 3.12 15

(1,2) 1.12 3.15 14

(2,3) 0.87 2.96 15

(3,4) 0.74 2.90 11

(4,5) 0.56 2.75 9

(5,6) 0.45 2.52 7

(6,7) 0.37 2.43 5

(7,8) 0.26 2.30 3

(8,9) 0.21 2.26 2

(9,10) 0.12 2.10 2

(10,11) 0.13 1.93 2

(11,12) -0.06 1.90 1

12 -0.13 1.97 2
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 Figure 1: The response of hours worked to a technology shock estimated 
using data simulated from a RBC Model

RBC Model (γ = b = 0), DGP
γ = 0.45 b = 0
γ = 3 b = 0.7

 Note Thick solid line is average response over 2000 estimated responses using data simulated from
 a RBC model.  Edges of grey area indicate 5th and 95th percentiles of all estimated responses to
a one−standard−deviation technology shock
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 Figure 2: Testing The Impact Response of Hours.
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 Figure 3: Testing The Impact Response of Hours using a false null hypothesis
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 Figure 4 Rejection Rates For Different Tests when True DGP is RBC Model.
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 Figure 5: The Shape of The Hours Response

 Note Each gray dot represents the estimated response from a simulated dataset.  Each dataset is
simulated from an RBC model.  The triangle is the response implied by the RBC model (the DGP). The
square is the response implied by a DSGE model with high real adjustment costs (ie b =0.7 γ =3).
The star and the ellipses indicate the point estimate and confidence interval for an illustrative simulation.
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 Figure 6: The response of investment to a technology shock estimated 
using data simulated from a RBC Model

RBC Model (γ = b = 0) DGP
γ = 0.45 b = 0
γ = 3 b = 0.7

 Note Thick solid line is average response over 2000 estimated responses using data simulated from
 a RBC model.  Edges of grey area indicate 5th and 95th percentiles of all estimated responses to
a technology shock



 Figure 7 Rejection Rates For Testing Investment Response.
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 7B: With Habit, b = 0.7
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 Figure 8: The response of hours worked to a technology shock estimated 
using data simulated from a Model with High Investment Adj. Costs and Habit

RBC Model (γ = b = 0)
γ = 0.45 b = 0
γ = 3 b = 0.7 (DGP)

 Note Thick black line is average estimated response across 2000 simulations from a DSGE model with 
high real rigidities.  Edges of grey area indicate 5th and 95th percentiles of all estimated responses to 
a one−standard−deviation technology shock
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Figure 9a: The estimated response of output to a technology shock

RBC Model γ = 0.45 b = 0 γ = 3 b = 0.7

Note Thick black line is estimated response using a three variable VAR using U.S. data between 1954 to 2001.
Edges of dashed areas indicate confidence interval of 2.8 standard deviations.
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Figure 9b: The estimated response of hours worked to a technology shock

RBC Model γ = 0.45 b = 0 γ = 3 b = 0.7

Note Thick black line is estimated response using a three variable VAR using U.S. data between 1954 to 2001.
Edges of dashed areas indicate confidence interval of 2.8 standard deviations.
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Figure 9c: The estimated response of Investment to a technology shock

RBC Model
γ = 0.45 b = 0
γ = 3 b = 0.7

Note Thick black line is estimated response using a three variable VAR using U.S. data between 1954 to 2001.
Edges of dashed areas indicate confidence interval of 2.8 standard deviations.
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Figure 10a: The Shape of The Hours Response In An Estimated VAR

Empirical Estimate RBC Model γ = 0.45 b = 0 γ = 3 b = 0.7

NoteGrey dots indicate responses from bootstrap simulations using empirical VAR.
Blue ellipse indicates confidence interval around point estimate.
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Figu                        Figure 10b: The Shape of The Investment Response In An Estimated VAR

Empirical Estimate RBC Model γ = 0.45 b = 0 γ = 3 b = 0.7

Note: Grey dots indicate responses from bootstrap simulations using empirical VAR.
Blue ellipse indicates confidence interval around point estimate.



 Figure A: Implications of Weak Instruments on Sampling Uncertainty 
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