Structural Vector Autoregressions with Markov Switching

Markku Lanne University of Helsinki

Helmut Lütkepohl European University Institute, Florence

Katarzyna Maciejowska European University Institute, Florence

Helmut Lütkepohl (EUI Florence)

Carlo Giannini Conference

Motivation

- Identifying shocks is a central problem in SVAR models.
- Previous proposals:
 - Restrictions on instantaneous effects of shocks (Sims, 1980).
 - Restrictions on long-run effects of shocks (Blanchard/Quah, 1989; King/Plosser/Stock/Watson, 1991).
 - Sign restrictions (Canova/DeNicoló, 2002; Uhlig, 2005).
 - Bayesian methods (Koop, 1992).
 - Using statistical data properties
 - Heteroskedasticity (Rigobon, 2003; Lanne/Lütkepohl, 2008)
 - Nonnormal residual distribution (Lanne/Lütkepohl, 2009)
- This paper:

Use Markov regime switching

4 Conclusions

Overview

2 Estimation

3 Inflation, Unemployment, Interest Rate

4 Conclusions

- 一司

Reduced form VAR model

Variables of interest: $y_t = (y_{1t}, \dots, y_{Kt})'$

$$y_t = Dd_t + A_1y_{t-1} + \cdots + A_py_{t-p} + u_t$$

- d_t deterministic term.
- $u_t \sim (0, \Sigma_u)$.

Structural form VAR model

AB-model à la Amisano & Giannini (1997):

$$Ay_t = D^{(s)}d_t + A_1^{(s)}y_{t-1} + \dots + A_p^{(s)}y_{t-p} + B\varepsilon_t$$

- A typically has ones on its main diagonal.
- A or B may be identity matrix.
- $\varepsilon_t \sim (0, \Sigma_{\varepsilon}).$
- Σ_{ε} diagonal.

•
$$\Sigma_u = A^{-1}B\Sigma_{\varepsilon}B'A^{-1'}$$
.

Markov Switching

Markov process

$$s_t \in \{1, \ldots, M\}$$
 $(t = 0, \pm 1, \pm 2, \ldots)$

Transition probabilities

$$p_{ij} = \Pr(s_t = j | s_{t-1} = i), \quad i, j = 1, \dots, M.$$

Conditional distribution of u_t

$$u_t|s_t \sim \mathcal{N}(0, \Sigma_{s_t}).$$

Identification of Shocks

Assumption: M = 2

A matrix decomposition result

 $\begin{array}{l} \Sigma_1, \ \Sigma_2 \ \text{positive definite} \\ \Rightarrow \ \exists \ \mathsf{a} \ (K \times K) \ \text{matrix} \ B \ \text{and} \ \Lambda = \mathsf{diag}(\lambda_1, \ldots, \lambda_K) \\ \text{ such that} \ \Sigma_1 = BB' \ \text{and} \ \Sigma_2 = B \Lambda B' \end{array}$

Identification of Shocks

Assumption: M = 2

A matrix decomposition result

 $\begin{array}{l} \Sigma_1, \ \Sigma_2 \ \text{positive definite} \\ \Rightarrow \ \exists \ \mathsf{a} \ (\mathcal{K} \times \mathcal{K}) \ \text{matrix} \ B \ \text{and} \ \Lambda = \mathsf{diag}(\lambda_1, \ldots, \lambda_{\mathcal{K}}) \\ \text{such that} \ \Sigma_1 = BB' \ \text{and} \ \Sigma_2 = B\Lambda B' \end{array}$

Uniqueness of B

B is (locally) unique if the λ_j 's are distinct and ordered in a specific way (e.g., smallest to largest)

Identification of Shocks

Assumption: M = 2

A matrix decomposition result

 $\begin{array}{l} \Sigma_1, \ \Sigma_2 \ \text{positive definite} \\ \Rightarrow \ \exists \ \mathsf{a} \ (\mathcal{K} \times \mathcal{K}) \ \text{matrix} \ B \ \text{and} \ \Lambda = \mathsf{diag}(\lambda_1, \ldots, \lambda_{\mathcal{K}}) \\ \text{such that} \ \Sigma_1 = BB' \ \text{and} \ \Sigma_2 = B\Lambda B' \end{array}$

Uniqueness of B

B is (locally) unique if the λ_j 's are distinct and ordered in a specific way (e.g., smallest to largest)

Identification assumption

Instantaneous effects of shocks are the same across all states

More than two states I

Assumption: M > 2

Matrix decomposition

 $\Sigma_1 = BB', \quad \Sigma_i = B\Lambda_i B', \quad i = 2, ..., M$ imposes restrictions on covariance matrices which can be tested.

Test for state invariant B

LR test has asymptotic χ^2 -distribution with $\frac{1}{2}MK(K+1) - K^2 - (M-1)K$ degrees of freedom.

More than two states II

Uniqueness of *B*

B is (locally) unique if for each pair of equal diagonal elements, for example, in $\Lambda_2 = \text{diag}(\lambda_{21}, \ldots, \lambda_{2K})$ there is a corresponding pair of distinct diagonal elements in one of the other $\Lambda_i = \text{diag}(\lambda_{i1}, \ldots, \lambda_{iK})$, $i = 3, \ldots, M$.

Alternative decomposition

$$\Sigma_i = A^{-1} \Lambda_i^* A^{-1\prime}, \quad i = 1, \dots, M$$

Overview

3 Inflation, Unemployment, Interest Rate

4 Conclusions

Estimation

ML estimation

Use EM algorithm to optimize (pseudo) log likelihood.

э

Overview

3 Inflation, Unemployment, Interest Rate

4 Conclusions

Research question and data

Question of interest

Has US monetary policy changed or just the volatility of shocks? (Primiceri, 2005)

Research question and data

Question of interest

Has US monetary policy changed or just the volatility of shocks? (Primiceri, 2005)

Data and variables

quarterly US data

Sample period: 1953*Q*1 – 2001*Q*3

Variables:

- π_t inflation rate based on chain weighted GDP price index
- u_t unemployment rate
- r_t yield on three-months treasury bills

Primiceri's identifying restrictions

$$A = \begin{bmatrix} * & 0 & 0 \\ * & * & 0 \\ * & * & * \end{bmatrix} \qquad \begin{bmatrix} \pi_t \\ u_t \\ r_t \end{bmatrix}$$

Helmut Lütkepohl (EUI Florence)

Carlo Giannini Conference

Rome, January 2010 15 / 25

э

Table: Estimates of Structural Parameters of MS Models for $(\pi_t, u_t, r_t)'$ with Lag Order p = 2 and Intercept Term (Sample Period: 1953Q1 - 2001Q3)

	unrestricted model		restricted model	
parameters	estimates	std.dev.	estimates	std.dev.
λ_1	2.708	0.790	3.989	1.007
λ_2	8.230	2.381	7.956	1.979
λ_3	16.57	3.889	12.87	2.382
$\log L_T$	-148.12		-156.35	

Note: Standard errors are obtained from the inverse Hessian of the log likelihood function.

Table: Wald Tests for Equality of λ_i 's for Unrestricted Model from Table 1

H ₀	test value	<i>p</i> -value
$\lambda_1 = \lambda_2$	4.85	0.028
$\lambda_1 = \lambda_3$	11.70	0.001
$\lambda_2 = \lambda_3$	2.83	0.092

э

Test of Primiceri's identifying restrictions

Estimated B matrix

$$\hat{B} = \begin{bmatrix} 0.193 (0.024) & -0.105 (0.026) & 0.008 (0.029) \\ -0.104 (0.027) & -0.101 (0.025) & -0.066 (0.026) \\ 0.022 (0.049) & -0.085 (0.086) & 0.286 (0.031) \end{bmatrix}$$

Test of Primiceri's identifying restrictions

Estimated B matrix

$$\hat{B} = \begin{bmatrix} 0.193 (0.024) & -0.105 (0.026) & 0.008 (0.029) \\ -0.104 (0.027) & -0.101 (0.025) & -0.066 (0.026) \\ 0.022 (0.049) & -0.085 (0.086) & 0.286 (0.031) \end{bmatrix}$$

LR test of lower triangularity

16.47 (0.001)

Inflation responses to monetary policy shock

19 / 25

Unemployment responses to monetary policy shock

Helmut Lütkepohl (EUI Florence)

Rome, January 2010

20 / 25

Interpretation of states

$$\hat{A} = \begin{bmatrix} 1 & 1.041 & 0.029 \\ -0.537 & 1 & -0.230 \\ 0.115 & 0.841 & 1 \end{bmatrix},$$
$$\hat{\Lambda}_1^* = \begin{bmatrix} 0.037 & 0 & 0 \\ 0 & 0.010 & 0 \\ 0 & 0 & 0.082 \end{bmatrix} \text{ and } \hat{\Lambda}_2^* = \begin{bmatrix} 0.101 & 0 & 0 \\ 0 & 0.084 & 0 \\ 0 & 0 & 1.356 \end{bmatrix}.$$

- < A

æ

Probabilities of State 2 ($\Pr(s_t = 2|Y_T)$) for the unrestricted model for $(\pi_t, u_t, r_t)'$.

э

Overview

3 Inflation, Unemployment, Interest Rate

4 Conclusions

Identification assumptions:

- MS in the reduced form residuals.
- The impulse responses are invariant across regimes.

Advantages:

- Identifying assumptions in standard SVAR framework become overidentifying and can be tested.
- MS structure can be investigated with statistical methods.

Remaining problems:

- Tests for number of states.
- Confidence intervals for impulse responses.
- Models with many variables and regimes are computationally difficult to handle because of difficult likelihood function.
- Theory for asymptotic inference for models with cointegrated variables is not complete.