Structural Vector Autoregressions with Markov Switching

Markku Lanne
University of Helsinki
Helmut Lütkepohl
European University Institute, Florence
Katarzyna Maciejowska
European University Institute, Florence

Motivation

- Identifying shocks is a central problem in SVAR models.
- Previous proposals:
- Restrictions on instantaneous effects of shocks (Sims, 1980).
- Restrictions on long-run effects of shocks (Blanchard/Quah, 1989; King/Plosser/Stock/Watson, 1991).
- Sign restrictions (Canova/DeNicoló, 2002; Uhlig, 2005).
- Bayesian methods (Koop, 1992).
- Using statistical data properties
- Heteroskedasticity (Rigobon, 2003; Lanne/Lütkepohl, 2008)
- Nonnormal residual distribution (Lanne/Lütkepohl, 2009)
- This paper:

Use Markov regime switching

Overview

(1) Model setup
(2) Estimation
(3) Inflation, Unemployment, Interest Rate
(4) Conclusions

Overview

(1) Model setup

(2) Estimation

(3) Inflation, Unemployment, Interest Rate

Reduced form VAR model

Variables of interest: $\quad y_{t}=\left(y_{1 t}, \ldots, y_{K t}\right)^{\prime}$

$$
y_{t}=D d_{t}+A_{1} y_{t-1}+\cdots+A_{p} y_{t-p}+u_{t}
$$

- d_{t} - deterministic term.
- $u_{t} \sim\left(0, \Sigma_{u}\right)$.

Structural form VAR model

AB-model à la Amisano \& Giannini (1997):
$A y_{t}=D^{(s)} d_{t}+A_{1}^{(s)} y_{t-1}+\cdots+A_{p}^{(s)} y_{t-p}+B \varepsilon_{t}$

- A typically has ones on its main diagonal.
- A or B may be identity matrix.
- $\varepsilon_{t} \sim\left(0, \Sigma_{\varepsilon}\right)$.
- \sum_{ε} diagonal.
- $\Sigma_{u}=A^{-1} B \Sigma_{\varepsilon} B^{\prime} A^{-1 \prime}$.

Markov Switching

Markov process

$$
s_{t} \in\{1, \ldots, M\}(t=0, \pm 1, \pm 2, \ldots)
$$

Transition probabilities

$$
p_{i j}=\operatorname{Pr}\left(s_{t}=j \mid s_{t-1}=i\right), \quad i, j=1, \ldots, M
$$

Conditional distribution of u_{t}

$$
u_{t} \mid s_{t} \sim \mathcal{N}\left(0, \Sigma_{s_{t}}\right)
$$

Identification of Shocks

Assumption: $M=2$
A matrix decomposition result
Σ_{1}, Σ_{2} positive definite
$\Rightarrow \exists \mathrm{a}(K \times K)$ matrix B and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{K}\right)$ such that $\Sigma_{1}=B B^{\prime}$ and $\Sigma_{2}=B \wedge B^{\prime}$

Identification of Shocks

Assumption: $M=2$
A matrix decomposition result

$$
\begin{aligned}
& \Sigma_{1}, \Sigma_{2} \text { positive definite } \\
& \Rightarrow \exists \text { a }(K \times K) \text { matrix } B \text { and } \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{K}\right) \\
& \quad \text { such that } \Sigma_{1}=B B^{\prime} \text { and } \Sigma_{2}=B \wedge B^{\prime}
\end{aligned}
$$

Uniqueness of B
B is (locally) unique if the λ_{j} 's are distinct and ordered in a specific way (e.g., smallest to largest)

Identification of Shocks

Assumption: $M=2$
A matrix decomposition result

$$
\begin{aligned}
& \Sigma_{1}, \Sigma_{2} \text { positive definite } \\
& \Rightarrow \exists \text { a }(K \times K) \text { matrix } B \text { and } \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{K}\right) \\
& \quad \text { such that } \Sigma_{1}=B B^{\prime} \text { and } \Sigma_{2}=B \wedge B^{\prime}
\end{aligned}
$$

Uniqueness of B
B is (locally) unique if the λ_{j} 's are distinct and ordered in a specific way (e.g., smallest to largest)

Identification assumption
Instantaneous effects of shocks are the same across all states

More than two states I

Assumption: $M>2$
Matrix decomposition

$$
\Sigma_{1}=B B^{\prime}, \quad \Sigma_{i}=B \wedge_{i} B^{\prime}, \quad i=2, \ldots, M
$$

imposes restrictions on covariance matrices which can be tested.

Test for state invariant B
LR test has asymptotic χ^{2}-distribution with $\frac{1}{2} M K(K+1)-K^{2}-(M-1) K$ degrees of freedom.

More than two states II

Uniqueness of B
B is (locally) unique if for each pair of equal diagonal elements, for example, in $\Lambda_{2}=\operatorname{diag}\left(\lambda_{21}, \ldots, \lambda_{2 K}\right)$ there is a corresponding pair of distinct diagonal elements in one of the other $\Lambda_{i}=\operatorname{diag}\left(\lambda_{i 1}, \ldots, \lambda_{i K}\right), i=3, \ldots, M$.

Alternative decomposition

$$
\Sigma_{i}=A^{-1} \Lambda_{i}^{*} A^{-1 \prime}, \quad i=1, \ldots, M
$$

Overview

(2) Estimation

(3) Inflation, Unemployment, Interest Rate

ML estimation

Use EM algorithm to optimize (pseudo) log likelihood.

Overview

(1) Model setup

(2) Estimation
(3) Inflation, Unemployment, Interest Rate

Research question and data

Question of interest

Has US monetary policy changed or just the volatility of shocks?
(Primiceri, 2005)

Research question and data

Question of interest
Has US monetary policy changed or just the volatility of shocks?
(Primiceri, 2005)
Data and variables
quarterly US data
Sample period: 1953Q1 - 2001Q3

Variables:

- π_{t} - inflation rate based on chain weighted GDP price index
- u_{t} - unemployment rate
- r_{t} - yield on three-months treasury bills

Primiceri's identifying restrictions

$$
A=\left[\begin{array}{lll}
* & 0 & 0 \\
* & * & 0 \\
* & * & *
\end{array}\right] \quad\left[\begin{array}{l}
\pi_{t} \\
u_{t} \\
r_{t}
\end{array}\right]
$$

Table: Estimates of Structural Parameters of MS Models for $\left(\pi_{t}, u_{t}, r_{t}\right)^{\prime}$ with Lag Order $p=2$ and Intercept Term (Sample Period: 1953Q1-2001Q3)

	unrestricted model		restricted model	
parameters	estimates	std.dev.	estimates	std.dev.
λ_{1}	2.708	0.790	3.989	1.007
λ_{2}	8.230	2.381	7.956	1.979
λ_{3}	16.57	3.889	12.87	2.382
$\log L_{T}$	-148.12		-156.35	

Note: Standard errors are obtained from the inverse Hessian of the log likelihood function.

Table: Wald Tests for Equality of λ_{i} 's for Unrestricted Model from Table 1

H_{0}	test value	p-value
$\lambda_{1}=\lambda_{2}$	4.85	0.028
$\lambda_{1}=\lambda_{3}$	11.70	0.001
$\lambda_{2}=\lambda_{3}$	2.83	0.092

Test of Primiceri's identifying restrictions

Estimated B matrix

$$
\hat{B}=\left[\begin{array}{rrr}
0.193(0.024) & -0.105(0.026) & 0.008(0.029) \\
-0.104(0.027) & -0.101(0.025) & -0.066(0.026) \\
0.022(0.049) & -0.085(0.086) & 0.286(0.031)
\end{array}\right]
$$

Test of Primiceri's identifying restrictions

Estimated B matrix

$$
\hat{B}=\left[\begin{array}{rrr}
0.193(0.024) & -0.105(0.026) & 0.008(0.029) \\
-0.104(0.027) & -0.101(0.025) & -0.066(0.026) \\
0.022(0.049) & -0.085(0.086) & 0.286(0.031)
\end{array}\right]
$$

LR test of lower triangularity

$$
16.47 \text { (0.001) }
$$

Inflation responses to monetary policy shock

Unemployment responses to monetary policy shock

Interpretation of states

$$
\begin{gathered}
\hat{A}=\left[\begin{array}{rrr}
1 & 1.041 & 0.029 \\
-0.537 & 1 & -0.230 \\
0.115 & 0.841 & 1
\end{array}\right], \\
\hat{\Lambda}_{1}^{*}=\left[\begin{array}{ccc}
0.037 & 0 & 0 \\
0 & 0.010 & 0 \\
0 & 0 & 0.082
\end{array}\right] \text { and } \hat{\Lambda}_{2}^{*}=\left[\begin{array}{ccc}
0.101 & 0 & 0 \\
0 & 0.084 & 0 \\
0 & 0 & 1.356
\end{array}\right] .
\end{gathered}
$$

Probabilities of State $2\left(\operatorname{Pr}\left(s_{t}=2 \mid Y_{T}\right)\right)$ for the unrestricted model for $\left(\pi_{t}, u_{t}, r_{t}\right)^{\prime}$.

Overview

(1) Model setup

(3) Inflation, Unemployment, Interest Rate
(4) Conclusions

Conclusions

Identification assumptions:

- MS in the reduced form residuals.
- The impulse responses are invariant across regimes.

Advantages:

- Identifying assumptions in standard SVAR framework become overidentifying and can be tested.
- MS structure can be investigated with statistical methods.

Extensions

Remaining problems:

- Tests for number of states.
- Confidence intervals for impulse responses.
- Models with many variables and regimes are computationally difficult to handle because of difficult likelihood function.
- Theory for asymptotic inference for models with cointegrated variables is not complete.

