Data and LI's: IC & Google

Forecasting models

Out-of-sample Evaluation

Google it!

Forecasting the US unemployment rate with a Google job search index

Francesco D'Amuri Juri Marcucci

Bank of Italy

2nd International Conference in Memory of Carlo Giannini

Time Series Econometrics and Macroeconomic Forecasting in a Policy Environment

Rome - January 19, 2010

Motivations	Data and LI's: IC & Google	Forecasting models	Out-of-sample Evaluation	Conclusio
0000	000000000	000	0000000000000	00
Outline				

- Introduction and Motivations
- Data and Leading indicators for the US unemployment rate
 - Initial jobless claims (traditional!)
 - Google job web search index (New!)
- Forecasting models
- Out-of-sample evaulation
 - Tests Equal forecast accuracy and forecast encompassing
 - Reality Check test for superior predictive ability
- Some Robustness
 - Results from aggregation of States' forecasts
 - Comparison with Survey of Professional Forecasters
- Discussion and Conclusion

- Having *reliable* and *updated* **unemployment** forecasts has become increasingly important, in particular during economic downturns
- The literature on US unemployment forecasting has primarily dealt either with simple **linear** models or with **non-linear** models
 - For example Montgomery, Zarnowitz, Tsay and Tiao (JASA, 1998), Proietti (CSDA, 2003) or Rothman (RESTAT, 1998)
- These linear models have been augmented with some **leading indicators**: in particular the Initial jobless Claim (IC) seem to be the best indicator for the US unemployment, so far...

 (Motivations)
 Data and Ll's: IC & Google
 Forecasting models
 Out-of-sample
 Evaluation
 Conclusion

 0000
 0000000000
 000
 00000000000
 00
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000</t

Motivation Google 'job' web search weekly index from **Google Insights**

juri.marcucci@gmail.com | My Account | Help | Sign out | English (US) V Google Insights for Search Compare by Search terms Filter Tip: Use the plus sign to indicate OR. (tennis + squash) Search terms Web Search \$ All search terms Locations \$ Worldwide + Add search term Time Ranges 2004 - present 🛊 All Categories $\overline{}$ Search

See what the world is searching for.

With Google Insights for Search, you can compare search volume patterns across specific regions, categories, time frames and properties. See <u>examples</u> of how you can use Google Insights for Search.

Sategories

Narrow data to specific categories, like finance, health, and sports. Examples: The top vehicle brands in France (last 30 days) | Top Newspapers in the UK

Seasonality

Anticipate demand for your business so you can budget and plan accordingly. Examples: tour de france in 2008, 2007... | soccer in 2006 vs. 2007

Geographic distribution

Know where to find your customers. See how search volume is distributed across regions and cities.

Examples: recipes in different US metro areas | soccer in Brazil, Italy, Germany, UK

Properties

See search patterns in other Google properties. Examples: News highlights from the last 7 days (USA) | puppies vs. kittens, in the USA (image search)

More examples

comic books, graphic novels nuty giuliani, John mccain, mitt romney dr. seuss, dr martin luther king, dr dr. livejournal, blogger boxers underwear, briefs underwear urkey, gifts, diet roland garros, us open doctor who, battlestar galactica wift, broadband perf, python, ruby, php ecards yeb, insider pages

D'Amuri & Marcucci (Bank of Italy)

- In this paper we suggest an *alternative leading indicator* to forecast the US unemployment rate
 - \Rightarrow a **Google** job web search index
- To the best of our knowledge, this indicator has only been used by:
 - Askitas & Zimmermann (2009) to forecast German unemployment
 - D'Amuri (2009) to forecast Italian unemployment
 - Suhoy (2009) to forecast unemployment in Israel
 - Choi and Varian (2009) to predict the US initial claims
- Running an extensive out-of-sample forecasting *horse-race*, we compare the predictive power of linear forecasting models using the Google Index (GI) with those using the Initial Claims or combinations of both.
- Our interest is on *short-term forecasting*, i.e. in forecasting the US monthly unemployment rate from 1- to 3-months ahead

- Our results show that the **Google index really helps** in predicting the monthly US unemployment rate, even after controlling for the effects of data-snooping.
 - Linear models with GI *outperform* all the other models using IC as a leading indicator, both in terms of **equal forecast** accuracy and superior predictive ability
- Moreover, linear models augmented with the GI outperform also at the state level (to predict the unemployment rate in each state) and in comparison to the Survey of Professional Forecasters.
- Our preferred models with *GI* also *outperform* standard *non-linear* models

 Motivations
 Data and Ll's: IC & Google
 Forecasting models
 Out-of-sample Evaluation
 Conclusion

 0000
 0000
 000
 0000000000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

Data 1) Unemployment rate (US and state level)

- Monthly unemployment rate (u_t) seasonally adjusted from BLS
 - Current Unemployment Statistics (national level)
 - Sample: 1948.1-2009.6 (738 obs.)
 - Local Area Unemployment Statistics (state level)
 - Sample: 1976.1-2009.6 (402 obs.)
- u_t for month t refers to:
 - people who **don't have a job**, but are **available for work**, in the week including the 12^{th} of month t...
 - ...and who **have looked for a job** in the previous 4 weeks (*reference week* included)

 Motivations
 Data and Ll's: IC & Google
 Forecasting models
 Out-of-sample Evaluation
 Conclusion

 0000
 0000
 000
 000
 000
 000
 000

 Data (Cont.)
 000
 000
 000
 000
 000

- 2) Initial Jobless Claims (US and state level)
 - Weekly Initial Jobless Claims (*IC*) seasonally adjusted from the US Department of Labor
 - \Rightarrow well-known Leading Indicator (Montgomery et al., 1998)
 - National level
 - Sample: 1967.1-2009.6 (510 obs.)
 - State level (SA w/ Tramo-Seats)
 - Sample: 1987.1-2009.6 (271 obs.)

Data (Cont.)

3) Google 'job' web search index from Google Insights (US and state level)

• Weekly Google Index (GI) seasonally adjusted from Google Insights (available almost in real time)

 \Rightarrow suggested Leading Indicator

(Incidence of "jobs" queries on total web queries in relevant week)

- National level
 - Sample: 2004.1-2009.6 (66 obs.)
- State level
 - Sample: 2004.1-2009.6 (66 obs.)

3) Incidence of keyword "jobs" vs other popular keywords

 Motivations
 (Data and Ll's: IC & Google)
 Forecasting models
 Out-of-sample Evaluation
 Conclus

 0000
 0000000000
 000
 00000000000
 000

 Data (Cont.)
 00000000000
 000
 00000000000
 000

ADF-GLS Unit Root tests by Elliott et al. (1996). Short and Full Sample

	Sample: 19	57:1-2009:6		Sample: 200	4:1-2009:6
Variable	Test	Test stat.	Variable	Test	
u_t	$DF - GLS^{\mu}$	-1.054	u_t	$DF - GLS^{\mu}$	-2.881***
	$DF - GLS^{\tau}$	-2.282		$DF - GLS^{\tau}$	-2.902*
$\log(u_t)$	$DF - GLS^{\mu}$	-0.901	$\log(u_t)$	$DF - GLS^{\mu}$	-2.792***
	$DF - GLS^{\tau}$	-2.190		$DF-GLS^{\tau}$	-2.797
u_t^{logit}	$DF - GLS^{\mu}$	-0.912	u_t^{logit}	$DF - GLS^{\mu}$	-2.801***
ι	$DF - GLS^{\tau}$	-2.203	ι	$DF - GLS^{\tau}$	-2.804
u_{\star}^{HPlog}	$DF - GLS^{\mu}$	-3.752***	u_{\star}^{HPlog}	$DF - GLS^{\mu}$	-2.659***
- L	$DF - GLS^{\tau}$	-4.414***	ι	$DF - GLS^{\tau}$	-2.523
u_t^{LLD}	$DF - GLS^{\mu}$	-1.344	u_t^{LLD}	$DF - GLS^{\mu}$	-2.823***
U U	$DF - GLS^{\tau}$	-2.190	e.	$DF-GLS^\tau$	-2.797

 Motivations
 Data and Ll's: IC & Google
 Forecasting models
 Out-of-sam

 0000
 000000000
 000
 00000000

Out-of-sample Evaluation

Conclusio

00

The setup of the forecasting horse-race

- Timing: T = R + P observations.
 - In the 'full-sample' (1967.1-2009.6) we have T = 510
 - In the 'short-sample' (2004.1-2009.6) we have T = 66
- The first *R* are used to estimate the models (in-sample) while the last *P* are used for **out-of-sample** evaluation.
- Want to predict u_t (or transformations) using linear ARMA models w/ and w/o exogenous leading indicators x_t :

• $x_t = \{IC_t, ..., IC_{t-k}\}$ • $x_t = \{IC_{wj,t}, ..., IC_{wj,t-k}\}, j = 1, ..., 4, k = 1, 2$ • $x_t = \{G_t, ..., G_{t-k}\}$ • $x_t = \{G_{wj,t}, ..., G_{wj,t-k}\}, j = 1, ..., 4, k = 1, 2$ • combinations IC and G

Motivations	Data and LI's: IC & Google	(Forecasting models)	Out-of-sample Evaluation	Conclusio
0000	000000000	000	000000000000000000000000000000000000000	00

The setup of the forecasting horse-race (Cont.) Forecasting Models: $\phi(L)y_t = \mu + x'_t\beta + \theta(L)\varepsilon_t$

			Full 3	Sar	mple: 1967.1	-20	07.2				Short	Sa	mple: 2004.1	-2	007.2	_
	AR(1)	#	AR(2)	#	ARMA(1,1)	#	ARMA(2,2)	#	AR(1)	#	AR(2)	#	ARMA(1,1)	#	ARMA(2,2)	#
w/o Ll																-
	u_{t-1}	1	u_{t-k}	1	$u_{t-1}, \varepsilon_{t-1}$	1	$u_{t-k}, \varepsilon_{t-k}$	1	u_{t-1}	1	u_{t-k}	1	$u_{t-1}, \varepsilon_{t-1}$	1	$u_{t-k}, \varepsilon_{t-k}$	1
w/ LI x_t																-
-							(t)									_
IC	\checkmark	1	\checkmark	1	\checkmark	1	~	1	\checkmark	1	\checkmark	1	\checkmark	1	~	1
IC_{wj}	\checkmark	4	\checkmark	4	\checkmark	4	\checkmark	4	\checkmark	4	\checkmark	4	\checkmark	4	\checkmark	4
G	-		-		-		-		\checkmark	1	\checkmark	1	\checkmark	1	\checkmark	1
G_{wj}	-		-		-		-		\checkmark	4	\checkmark	4	\checkmark	4	\checkmark	4
IC, G	-		-		-		-		\checkmark	1	\checkmark	1	\checkmark	1	\checkmark	1
IC_{wj}, G_{wj}	-		-		-		-		\checkmark	5	\checkmark	5	\checkmark	5	\checkmark	5
							(t - 1)									_
IC	~	1	\checkmark	1	√	1	√	1	\checkmark	1	\checkmark	1	\checkmark	1	~	1
IC_{wj}	\checkmark	4	\checkmark	4	\checkmark	4	\checkmark	4	\checkmark	4	\checkmark	4	\checkmark	4	\checkmark	4
G	-		-		-		-		\checkmark	1	\checkmark	1	\checkmark	1	\checkmark	1
G_{wj}	-		-		-		-		\checkmark	4	\checkmark	4	\checkmark	4	\checkmark	4
IC, G	-		-		-		-		\checkmark	1	\checkmark	1	\checkmark	1	\checkmark	1
IC_{wj}, G_{wj}	-		-		-		-		\checkmark	5	\checkmark	5	\checkmark	5	\checkmark	5
							(t - 2)									
IC	~	1	\checkmark	1	~	1	√	1	\checkmark	1	\checkmark	1	\checkmark	1	~	1
IC_{wi}	\checkmark	4	\checkmark	4	\checkmark	4	\checkmark	4	\checkmark	4	\checkmark	4	\checkmark	4	\checkmark	4
G	-		-		-		-		\checkmark	1	\checkmark	1	\checkmark	1	\checkmark	1
G_{wj}	-		-		-		-		\checkmark	4	\checkmark	4	\checkmark	4	\checkmark	4
IC, G	-		-		-		-		\checkmark	1	\checkmark	1	\checkmark	1	\checkmark	1
IC_{wj}, G_{wj}	-		-		-		-		\checkmark	5	\checkmark	5	\checkmark	5	\checkmark	5
$i = 1, \dots, 4;$	k = 1	. 2	- w/ o	r w	/o SAR/SM	A										_

00

The setup of the forecasting horse-race (Cont.)

- Forecasting scheme: we use a rolling scheme.
 - 'Short-sample': T = 66 with R = 38 and P = 28.
 - In-sample: 2004.1-2007.2, 2004.2-2007.3, etc.
 - 'Full-sample': T = 510 with R = 482 and P = 28.
 - In-sample: 1967.1-2007.2, 1967.2-2007.3, etc.
- We use **only** the information available **at month** *t* when we make the prediction.
 - $\bullet\,$ Thus at t we need to forecast future values of our exogenous LI's
 - To predict them, we use different auxiliary ARMA-like models (we present results only for the AR(1) case).

 Motivations
 Data and LI's: IC & Google

 0000
 0000000000

Forecasting models

Out-of-sample Evaluation

Conclusio

00

Out-of-sample Results

- For u_t and $u_t u_{t-1}$ (and all the other transformations) the best models out of sample in terms of the lowest MSE are those including GI as the leading indicator
- The **best 15 models** at all forecast horizons (1- to 3-months-ahead) **always include GI** as the exogenous variable
- However, the best 3, 5 and 11 models at respectively 1-, 2and 3-months ahead include **GI** *only* as the LI
- We test for
 - Equal Forecast Accuracy (EFA) using the Diebold & Mariano (1995) test
 - Forecast Encompassing (FE) using the Harvey, Leybourne & Newbold (1998) (HLN) test

ions Data and Ll's: IC & Google Forecasting models

Conclusio

00

Out-of-sample Results (Cont.)

- DM test and HLN test always reject the null at 10% at 1-month horizon and mostly reject at 2-month horizon.
- This means that our best model with GI outperforms all those models that use the *longest* available time series of u_t and IC, even though our best model is estimated over a rolling sample of 38 obs.
- Our best models with GI outperforms also those models not using GI over the short sample.

Motivations

Data and LI's: IC & Google

Forecasting models

Out-of-sample Evaluation

Conclusi

00

Out-of-sample Results (Cont.)

Best Forecasting Models: 1-month ahead

	1-step ahead												
n.	Model	MSE	Rank	DM	HLN								
Panel	A1: Best models												
261	$ARX(1) - G_t$	0.0166	1	-	-								
398	$ARMAX(1,1) - G_t - SA$	0.0167	2	0.060	2.145**								
327	$ARX(2) - G_t$	0.0172	3	0.448	1.063								
491	$ARMAX(2,2) - IC_{t-1} - G_{t-1}$	0.0177	4	0.328	1.912*								
305	$ARX(1) - G_{t-2}$	0.0179	5	0.616	1.289								
464	$ARMAX(2,2) - G_t - SA$	0.0179	6	0.312	1.370								
371	$ARX(2) - G_{t-2}$	0.0181	7	0.614	1.642								
283	$ARX(1) - G_{t-1}$	0.0182	8	1.516	1.701*								
463	$ARMAX(2,2) - G_{w4,t} - SA$	0.0184	9	0.442	2.116**								
277	$ARX(1) - IC_t - G_t - SA$	0.0186	10	0.852	1.326								
271	$ARX(1) - IC_t - G_t$	0.0186	11	0.709	1.605								
266	$ARX(1) - G_t - SA$	0.0188	12	0.998	1.122								
337	$ARX(2) - IC_t - G_t$	0.0191	13	0.799	1.875*								
343	$ARX(2) - IC_t - G_t - SA$	0.0192	14	0.870	1.550								
270	$ARX(1) - IC_{w4,t} - G_{w4,t}$	0.0192	15	0.778	1.807*								
Panel	B1: Best models without Google												
122	$ARMAX(2,2) - IC_{w4,t-2}$	0.0234	73	2.491**	3.074***								
133	ARMA(1,1)	0.0301	197	2.152**	2.485**								
Panel	C1: Non-linear models												
521	SETAR(2)	0.0332	258	2.434**	2.925***								
522	LSTAR(2)	0.0368	362	2.497**	3.015***								
523	AAR(2)	0.0342	276	2.337**	2.903***								

Motivations

Data and LI's: IC & Google

Forecasting models

Out-of-sample Evaluation

Conclusi

00

Out-of-sample Results (Cont.)

Best Forecasting Models: 2-month ahead

2-step ahead											
n.	Model	MSE	Rank	DM	HLN						
Panel	A2: Best models										
261	$ARX(1) - G_t$	0.0157	1	-	-						
464	$ARMAX(2,2) - G_t - SA$	0.0163	2	0.136	1.291						
398	$ARMAX(1,1) - G_t - SA$	0.0166	3	0.177	1.219						
327	$ARX(2) - G_t$	0.0172	4	0.633	0.864						
266	$ARX(1) - G_t - SA$	0.0175	5	0.700	0.869						
277	$ARX(1) - IC_t - G_t - SA$	0.0186	6	0.952	1.142						
332	$ARX(2) - G_t - SA$	0.0194	7	0.955	1.192						
343	$ARX(2) - IC_t - G_t - SA$	0.0206	8	1.150	1.285						
283	$ARX(1) - G_{t-1}$	0.0208	9	1.514	1.543						
420	$ARMAX(1,1) - G_{t-1} - SA$	0.0217	10	0.981	1.373						
288	$ARX(1) - G_{t-1} - SA$	0.0220	11	1.402	1.551						
305	$ARX(1) - G_{t-2}$	0.0220	12	1.551	1.718*						
349	$ARX(2) - G_{t-1}$	0.0222	13	1.915*	2.024**						
293	$ARX(1) - IC_{t-1} - G_{t-1}$	0.0233	14	1.989**	1.994**						
299	$ARX(1) - IC_{t-1} - G_{t-1} - SA$	0.0234	15	1.392	1.468						
Panel	B2: Best models without Google										
122	$ARMAX(2,2) - IC_{w4,t-2}$	0.0514	180	1.814*	1.618						
234	$ARMAX(2,2) - IC_{w3,t} - SA$	0.0565	191	1.389	1.131						
Panel	C2: Non-linear models										
521	SETAR(2)	0.0388	97	1.053	1.720*						
522	LSTAR(2)	0.0447	140	1.190	1.779*						
523	AAR(2)	0.0436	134	1.183	1.721*						

Motivations

Data and LI's: IC & Google

Forecasting models

Out-of-sample Evaluation

Conclusi

00

Out-of-sample Results (Cont.)

Best Forecasting Models: 3-month ahead

3-step ahead												
n.	Model	MSE	Rank	DM	HLN							
Panel	A3: Best models											
398	$ARMAX(1,1) - G_t - SA$	0.0350	1	-	-							
327	$ARX(2) - G_t$	0.0372	2	0.230	0.793							
332	$ARX(2) - G_t - SA$	0.0379	3	0.244	0.671							
261	$ARX(1) - G_t$	0.0382	4	0.308	0.852							
464	$ARMAX(2,2) - G_t - SA$	0.0382	5	0.295	0.579							
266	$ARX(1) - G_t - SA$	0.0383	6	0.299	0.777							
349	$ARX(2) - G_{t-1}$	0.0488	7	1.164	1.300							
354	$ARX(2) - G_{t-1} - SA$	0.0495	8	1.115	1.440							
393	$ARMAX(1,1) - G_t$	0.0508	9	0.722	1.060							
288	$ARX(1) - G_{t-1} - SA$	0.0510	10	1.142	1.501							
283	$ARX(1) - G_{t-1}$	0.0513	11	1.217	1.383							
343	$ARX(2) - IC_t - G_t - SA$	0.0528	12	0.659	0.811							
277	$ARX(1) - IC_t - G_t - SA$	0.0531	13	0.681	0.852							
365	$ARX(2) - IC_{t-1} - G_{t-1} - SA$	0.0548	14	1.275	1.658*							
265	$ARX(1) - G_{w4,t} - SA$	0.0555	15	0.938	1.219							
Panel	B3: Best models without Google											
122	$ARMAX(2,2) - IC_{w4,t-2}$	0.1406	191	1.309	1.249							
215	$ARMAX(1,1) - IC_{w4,t-1} - SA$	0.1294	173	1.748*	1.752*							
Panel	C3: Non-linear models											
521	SETAR(2)	0.0589	24	0.758	1.447							
522	LSTAR(2)	0.0620	30	0.790	1.411							
523	AAR(2)	0.0652	35	0.814	1.389							

 Motivations
 Data and Ll's:
 IC & Google
 Forecasting models
 Out-of-sample Evaluation
 C

 0000
 0000000000
 000
 00000000000
 000
 000

Out-of-sample test of Superior Predictive Ability White's (2000) Reality Check (RC) test

- The RC is a test for superior unconditional predictive ability that also accounts for the *dependence* among forecasting models (*data-snooping*).
- The null hypothesis is that all the competing models are no better than the benchmark model, i.e.
 H₀ : max_{1≤k≤L} E(f_k) ≤ 0, where f_k = e²_{0,t} e²_{k,t}
- The alternative is that H_0 is false, that is, there exists a best model which is superior to the benchmark.
- White's (2000) RC test statistic for H_0 is formed as $\bar{V} = \max_{1 \le k \le L} \sqrt{P} \bar{f}_k$, where $\bar{f}_k = P^{-1/2} \sum_{t=R+1}^T \hat{f}_{k,t}$
- Using the stationary bootstrap of Politis and Romano (1994), the empirical distribution of $\bar{V}^* = \max_{1 \le k \le L} \sqrt{P}(\bar{f}^*_k \bar{f}_k)$ is used to compute the RC *p*-value

 Motivations
 Data and Ll's: IC & Google
 Forecasting models
 Out-of-sample Evaluation
 Conclu

 0000
 0000000000
 000
 0000000000
 00

Out-of-sample test of Superior Predictive Ability (Cont.) Reality Check *p*-values (in **bold** *p*-values \geq **5%** \Rightarrow fail to reject H_0)

	B=2000	B=5000		B=2000	B=5000			
	u_t				u_{t}^{LLD}			
1-step	Bench	mark=403	1-step	Bench	mark=327			
q=0.50	0.073	0.070	q=0.50	0.076	0.076			
q = 0.10	0.053	0.057	q=0.10	0.053	0.060			
2-step	Bench	mark=332	2-step	Bench	mark=327			
q=0.50	0.037	0.039	q=0.50	0.043	0.040			
q=0.10	0.053	0.052	q=0.10	0.061	0.057			
3-step	Bench	mark=332	3-step	Bench	mark=266			
q=0.50	0.037	0.045	q=0.50	0.029	0.025			
q=0.10	0.046	0.052	q=0.10	0.050	0.052			
		$log(u_t)$		ı	$u_t - u_{t-1}$			
1-step	Bench	ımark=327	1-step	Bench	mark=261			
q=0.50	q=0.50 0.099 0.100 q=0.10 0.050 0.045		q=0.50	0.107	0.098			
q=0.10			q=0.10	0.055	0.057			
2-step	Bench	mark=327	2-step	Benchmark=261				
q=0.50	0.080	0.080	q=0.50	0.098	0.097			
q=0.10	0.058	0.058	q=0.10	0.053	0.045			
3-step	Bench	ımark=266	3-step	Bench	mark=398			
q=0.50	0.114	0.114	q=0.50	0.073	0.073			
q=0.10	0.058	0.066	q=0.10	0.048	0.048			
		u_{\star}^{logit}			u_{t}^{HPlog}			
1-step	Bench	mark=327	1-step	Bench	mark=327			
q=0.50	0.083	0.083	q=0.50	0.073	0.083			
q=0.10	0.073	0.068	q=0.10	0.057	0.060			
2-step	Bench	mark=327	2-step	Bench	mark=327			
q=0.50	0.027	0.033	q=0.50	0.065	0.062			
q=0.10	0.054	0.056	q=0.10	0.057	0.057			
3-step	Bench	mark=266	3-step	Bench	mark=266			
q=0.50	0.028	0.027	q=0.50	0.041	0.038			
a=0.10	0.052	0.054	a=0.10	0.061	0.052			

Data and LI's: IC & Google Forecasting models Out-of-sample Evaluation

Further robustness checks out-of-sample

- Also recursive scheme with similar results (unreported).
- Different auxiliary models to predict the LI's: AR(2), ARMA(1,1), ARMA(2,2) with similar (unreported) results.
- Comparison of our best models (overall and without Google indicator) with the Survey of Professional Forecasters for the quarterly unemployment rate
- State-level forecasts with different aggregation schemes
- Some non-linear models typically adopted in the literature
- We also ran the horse-race for different transformation of u_t typically used in the literature, such as

•
$$\log(u_t)$$

• $u_t^{LLD} = \log(u_t) - \hat{\alpha} - \hat{\beta}t$
• $u_t^{logit} = \log[u_t/(1 - u_t)]$
• $u_t^{HPlog} = \log(u_t) - [\log(u_t)]^{HP}$

- Sample: 2007:Q1-2009:Q2
 - We also compared our forecasting models with the Survey of Professional Forecasters (SPF) (mean, median and best)
 - At the 'middle' of Q(J) (around Feb, May, Aug and Nov 15) SPF issues forecasts for Q(J+1) to Q(J+5) (true deadline for forecasters is around 10th of same month)
 - We compare SPF^{best} , SPF^{median} and SPF^{mean} with 3 different forecasts of quarterly US unemployment from the following models (for u_t)
 - Best model overall, i.e. model with Google (# 403)
 - Best model overall without Google, i.e. model with Initial Claims (# 128)
 - Best model in the short sample without Google (# 205)

A further check: comparison with the SPF (Cont.)

00

A further check: comparison with the SPF (Cont.) Sample: 2007:Q1-2009:Q2

- For each model we compute 3 sets of quarterly forecasts
 - $\textcircled{0} \mbox{ At the end of } Q(J), \mbox{ e.g. 2007.3: forecast 1-month ahead}$

$$\hat{u}_{t+1|t} \Rightarrow \mathbf{x}^{1\text{st-month}}$$

is our forecast for Q(J+1) (conservative)

2 At the end of Q(J), e.g. 2007.3: forecast 2-month ahead

$$\hat{u}_{t+2|t} \Rightarrow \mathbf{x}^{2nd-month}$$

is our forecast for Q(J+1) (conservative)

3 Around the 10th of the second month of Q(J), e.g. 2007.5: forecast 1- and 2-month ahead

$$[u_t + \hat{u}_{t+1|t} + \hat{u}_{t+2|t}]/3 \Rightarrow \mathbf{x}^{\text{Comb}}$$

is our forecast for Q(J+1) (less conservative and similar timing to $\ensuremath{\mathsf{SPF}}\xspace$)

Conclusi

00

A further check: comparison with the SPF (Cont.) Sample: 2007:Q1-2009:Q2. Benchmark: G^{Comb}

	MSE	Rank	DM	HLN
SPF^{best}	1.373	21	1.911*	2.177**
SPF^{mean}	0.415	11	1.545	2.784***
SPF^{med}	0.360	7	1.317	2.892***
$G^{1st-month}$	0.530	15	-1.522	2.401**
$G^{2nd-month}$	0.419	12	1.724*	1.925*
G^{Comb}	0.082	1	-	-
$IC^{1st-month}$	0.893	17	-0.337	2.621***
$IC^{2nd-month}$	0.361	8	-0.919	1.457
IC^{Comb}	0.208	5	-2.012**	-1.875*
$IC_s^{1st-month}$	0.612	16	0.048	2.386**
$IC_s^{2nd-month}$	0.413	10	1.810*	1.759*
IC_s^{Comb}	0.218	6	1.306	1.239
$SETAR^{1st-month}$	1.123	19	2.881***	2.596***
$SETAR^{2nd-month}$	0.373	9	1.098	2.902***
$SETAR^{Comb}$	0.098	2	-1.401	2.587***
$LSTAR^{1st-month}$	1.228	20	2.558**	2.407**
$LSTAR^{2nd-month}$	0.433	14	1.550	2.723***
$LSTAR^{Comb}$	0.127	4	-1.265	2.315**
$AAR^{1st-month}$	1.060	18	2.630***	2.418**
$AAR^{2nd-month}$	0.432	13	1.768*	2.900***
AAR^{Comb}	0.102	3	-1.37	2.662***

D'Amuri & Marcucci (Bank of Italy) 'Google it!' Forecasting the US unemployment rate with a Google search index31

 Motivations
 Data and Ll's: IC & Google
 Forecasting models
 Out-of-sample Evaluation
 C

 0000
 0000000000
 000
 0000000000.
 000
 0000000000.
 000

A further check: aggregation of State-level forecasts

- For each 51 states (including District of Columbia) we ran the same horse-race with the same 520 forecasting models.
- For $u_t u_{t-1}$ the percentage of best models for each state using the Google indicator as a LI ranges between 75% and 84% for 1-, 2- and 3-month-ahead forecasts.
- For u_t such percentage ranges between 69 and 82%.
- We test whether the **aggregation** of the 51 best state models could improve the forecasting performance over the federal benchmark. We use the following weights:
 - equal weight
 - $\bullet~\%$ or share of labor force w.r.t. US total
 - $\bullet~\%$ of labor force \times share of internet use among labor force
 - $\bullet~\%$ of labor force \times share of internet use among active
 - $\bullet~\%$ of labor force \times share of internet use among unemployed
 - % of unemployed w.r.t. US total \times share of internet use among unemployed

 Motivations
 Data and Ll's: IC & Google
 Forecasting models
 Out-of-sample Evaluation
 Conclusion

 0000
 00000000000
 000
 00000000000
 00
 00

A further check: aggregation of State-level forecasts (Cont.)

	1-Step					2-Step					3-Step				
Variable: $d(u_t)$	MSE	Rk1	Rk2	DM	HLN	MSE	Rk1	Rk2	DM	HLN	MSE	Rk1	Rk2	DM	HLN
Model															
best	0.0166	1	1	-	-	0.0157	1	1	-	-	0.0350	1	4	-	-
simple avg	0.2845	7	525	5.30 ^a	4.92^a	0.3391	7	524	2.77 ^a	2.31^{b}	0.3966	7	510	1.99^{b}	2.31^{b}
labor force (LF)	0.0292	2	181	-0.13	2.68 ^a	0.0310	2	48	-0.30	1.31	0.0411	2	7	-1.17	1.31
IU all $ imes$ LF	0.0299	5	196	-0.06	2.75 ^a	0.0314	3	51	-0.28	1.32	0.0413	3	8	-1.16	1.32
IU active $\times~\text{LF}$	0.0296	3	190	-0.09	2.69 ^a	0.0318	4	56	-0.26	1.30	0.0423	4	9	-1.14	1.30
IU UN $ imes$ LF	0.0298	4	194	-0.07	2.71^{a}	0.0322	5	57	-0.25	1.31	0.0425	5	10	-1.13	1.31
IU UN \times UN	0.0917	6	519	2.33^{b}	3.33 ^a	0.0690	6	239	0.65	1.66 ^c	0.0618	6	32	-0.53	1.66^c
Variable: u_t	MSE	Rk1	Rk2	DM	HLN	MSE	Rk1	Rk2	DM	HLN	MSE	Rk1	Rk2	DM	HLN
Model															
best	0.0167	1	1	-	-	0.0169	1	7	-	-	0.0482	6	15	-	-
simple avg	0.3000	7	526	5.29 ^a	4.70 ^a	0.3700	7	522	2.48^{b}	2.15^{b}	0.4560	7	514	1.83^{c}	1.73^c
labor force (LF)	0.0280	2	120	0.24	2.95 ^a	0.0293	2	29	-1.23	0.37	0.0459	3	3	-1.06	0.54
IU all $ imes$ LF	0.0283	3	131	0.26	2.98 ^a	0.0294	3	30	-1.24	0.36	0.0454	2	2	-1.07	0.54
IU active $\times~\text{LF}$	0.0286	4	137	0.29	2.94 ^a	0.0303	5	33	-1.21	0.38	0.0474	5	5	-1.04	0.55
IU UN $ imes$ LF	0.0287	5	140	0.30	2.96 ^a	0.0302	4	32	-1.21	0.38	0.0469	4	4	-1.05	0.56
IU UN \times UN	0.0709	6	513	2.06 ^b	3.31 ^a	0.0519	6	152	-0.65	1.41	0.0373	1	1	-1.16	0.70

a, b, and c significant at 1, 5 & 10%

 Motivations
 Data and Ll's:
 IC & Google
 Forection

 000
 0000000000
 000
 000

Forecasting models

Out-of-sample Evaluation

Conclusion and discussion

- In this paper we have suggested a new leading indicator based on Google job web search index (GI) to forecast the monthly US unemployment rate
- We have tested the predictive power of different models using the Google index running an out-of-sample horse-race for 1- to 3-month-ahead forecasts
- Our results show that simple time series models augmented with GI outperform similar models using IC even when estimated over *longer* samples

tions Data and LI's: IC & Google Forecasting models

Out-of-sample Evaluation

Conclusion and discussion (Cont.)

- We assess the out-of-sample predictive ability of our best model (with GI) using DM and HLN test of EFA and FE, finding that **our best model is more accurate**
- We also assess the **superior predictive ability** of our best models with the Reality Check, thus controlling for *data-snooping* biases.
- Our results are robust to different transformations of u_t , to state-level data and aggregation, and our models also outperform the SPF
- Some **caveats** remain: we have a *very short* sample but our results seem very *promising*.