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1. Introduction 

 

Forecasts for an uncertain future are increasingly presented probabilistically.  Tay and Wallis 

(2000) survey applications in macroeconomics and finance, and more than half of the 

inflation targeting central banks, worldwide, now present density forecasts of inflation in the 

form of a fan chart.  When the focus of attention is the future value of a continuous random 

variable, the presentation of a density forecast or predictive distribution – an estimate of the 

probability distribution of the possible future values of the variable – represents a complete 

description of forecast uncertainty.  It is then important to be able to assess the reliability of 

forecasters’ statements about this uncertainty.  Dawid’s prequential principle is that 

assessments should be based on the forecast-observation pairs only; this ‘has an obvious 

analogy with the Likelihood Principle, in asserting the irrelevance of hypothetical forecasts 

that might have been issued in circumstances that did not, in fact, come about’ (Dawid, 1984, 

p.281).  A standard approach is to calculate the probability integral transform values of the 

outcomes in the forecast distributions.  Assessment then rests on ‘the question of whether 

[such] a sequence “looks like” a random sample from U[0,1]’ (p.281; quotation marks in the 

original): if so, the forecasts are said to be well-calibrated.  Several ways of addressing this 

question have been developed in the intervening years.  More general density forecast 

evaluation and comparison procedures now include information-based methods. 

 

 This paper reviews current density forecast evaluation procedures, in the light of 

Gneiting, Balabdaoui and Raftery’s (2007) recommendation that such procedures be 

augmented by an assessment of ‘sharpness’.  They propose the paradigm of maximising the 

sharpness of the predictive distributions subject to calibration for the evaluation of forecasts.  

By sharpness they mean the concentration or precision of the predictive distributions, which 

is a property of the forecasts only, although the condition of calibration remains a property of 

the forecast-observation pairs.  They motivate their proposal by an example in which four 

different forecasts are shown, in a simulation experiment, to produce uniform probability 

integral transforms, hence this requirement cannot distinguish between these forecasts.  Since 

one of them is the ‘ideal’ or correct forecast, ‘this is a disconcerting result’ (2007, p.245), 

which leads to the authors’ argument that there is a need for additional criteria.  However 

their example has some particular features which, from the point of view of practical time-

series forecasting, make it an insecure foundation on which to base their claim that existing 

evaluation methods are inadequate.  One such feature is the absence of a time dimension, 
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while others concern the nature of the competing forecasts and the limited evaluation criteria 

employed in the example.  These shortcomings are elaborated below, where we show that 

existing evaluation procedures can overcome the ‘disconcerting result’.  We then provide a 

more realistic example in which several competing forecasts produce uniform probability 

integral transforms, yet again this is not a ‘disconcerting result’ because the calibration 

requirement as posed by Dawid can indeed distinguish the ‘ideal’ forecast from its 

competitors in typical time-series forecasting contexts.  It is seen that existing information-

based procedures already subsume the sharpness/concentration/precision criterion to some 

extent, and it requires no additional emphasis.  We propose an extension to these procedures, 

to test the efficiency of density forecasts. 

 

 The rest of the paper proceeds as follows.  Section 2 describes the statistical 

framework for the problem at hand and the evaluation methods to be employed.  Section 3 

contains our reappraisal of the example of Gneiting, Balabdaoui and Raftery (2007), hereafter 

GBR.  Section 4 presents a second example, in which we show that available statistical 

methods, without an explicit sharpness criterion, satisfactorily facilitate density forecast 

evaluation and comparison.  Section 5 concludes. 

 

 

2. The statistical framework 

 

2.1. Calibration 

Probabilistic forecasts are represented as predictive cumulative distribution functions (CDFs) 

 or densities .These may be based on statistical models, supplemented by 

expert judgment.  The outcome  is a random variable with distribution , which 

represents the true data-generating process.  If 

tF ,  1, 2,...tf t =

tX tG

tF Gt=  for all t, GBR speak of the ‘ideal’ 

forecaster. 

 

In making forecasts for the future, Dawid’s prequential forecaster, at any time t, with 

the values  of the sequence ( )tx ( )( )
1 2, ,...,t

tX X X=X  to hand, issues a forecast distribution 

 for the next observation 1tF + 1tX + .  As noted above, the standard tool for assessing forecast 
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performance on the basis of the forecast-observation pairs is the sequence of probability 

integral transform (PIT) values 

( )t t tp F x= . 

If  coincides with , , then the tF tG 1, 2,...t = stp  are independent uniform U[0,1] variables.  

An advantage of basing forecast evaluation on the PIT values is that it is not necessary to 

specify , real or hypothesised.  Uniformity is often assessed in an exploratory manner, by 

inspection of histograms of PIT values, for example, while formal tests of goodness-of-fit are 

also available, as are tests of independence, described below. 

tG

 

 GBR define probabilistic calibration of the sequence  relative to the sequence  

as the condition 

tF tG

  ( )1

1

1 ( )    for all (0,1)
T

t t
t

G F p p p
T

−

=
→ ∈∑ .      (1) 

Their theorem 2 (2007, p.252) shows that probabilistic calibration is equivalent to the 

uniformity of the PIT values.  Intuitively, and dropping time subscripts for convenience, 

given a CDF  and the transformation ( )G x ( )p F x= , the standard change-of-variable 

approach gives the CDF ( )H p , say, as the expression inside the summation in equation (1): 

if ( )H p = p  then p has a uniform distribution.  Condition (1) is a convenient device for 

checking probabilistic calibration in circumstances where  is known, as in simulation 

experiments or theoretical exercises which require the data-generating process to be 

specified.  We note, however, that this definition of probabilistic calibration makes no 

reference to the independence component of the proposition discussed in the preceding 

paragraph.  To make the distinction clear, we refer to the two-component condition as posed 

by Dawid – uniformity and independence of the PITs – as complete calibration. 

tG

 

 Diebold, Gunther and Tay (1998) introduce these ideas to the econometrics literature 

and provide a full proof of the iidU[0,1] result.  For some purposes in this literature it is 

important to pay attention to the information set on which a forecast is based, its content and 

its timing.  Denoting the set of all information relevant to the determination of the outcome 

, available at the time the forecast was made, as tX tΩ , we write the ‘ideal’ forecast or 

correct conditional distribution as ( )t t tG x Ω ; in economic forecasting this is commonly 
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referred to as the ‘rational’ or ‘efficient’ forecast.  A practical forecast (t t tF x W ) , based on a 

different, possibly incomplete information set,  say, might have a different functional 

form, representing a different distribution, with different moments.  We denote the correct 

distribution conditional on that given information set as 

tW

( )*
t t tG x W , retaining the letter G to 

represent its ideal or correct nature but with an asterisk to indicate that this is with respect to a 

different information set.  Then we observe that if a practical forecast (t t tF x W )  coincides 

with the correct conditional distribution ( )*
t t tG x W  it satisfies probabilistic calibration – it 

has uniform PITs – but not necessarily complete calibration (see, for example, Corradi and 

Swanson, 2006). 

 

2.2. Statistical tests 

Smith (1985) describes diagnostic checks that can be applied to a range of forecasting 

models, based on the PIT values tp  or on the values given by their inverse normal 

transformation, ( )1
tz −= Φ tp , where ( )Φ ⋅  is the standard normal distribution function.  If tp  

is iidU(0,1), then  is iidN(0,1).  The advantages of this second transformation are that there 

are more tests available for normality, it is easier to test autocorrelation under normality than 

uniformity, and the normal likelihood can be used to construct likelihood ratio tests.  For a 

density forecast explicitly based on the normal distribution, the double transformation returns 

 as the standardised value of the outcome 

tz

tz tx , which could be calculated directly. 

 

 Formal tests of goodness-of-fit can be based on the tp  or  series, as noted above.  

Pearson’s classical chi-squared test assesses the goodness-of-fit of the PIT histogram to a 

uniform distribution.  The empirical cumulative distribution function of the PITs can be 

tested for uniformity by the Kolmogorov-Smirnov (KS) test or its Anderson-Darling (AD) 

modification.  The Doornik-Hansen (DH) test for normality of the zs uses transformed 

skewness and kurtosis measures (see Doornik and Hansen, 2008).  These tests are all based 

on random sampling assumptions, and there are no general results about their performance 

under autocorrelation.  Corradi and Swanson (2006) describe extensions to Kolmogorov type 

tests in the presence of dynamic misspecification and parameter estimation error; Bai and Ng 

(2005) provide generalisations of tests based on skewness and kurtosis to dependent data. 

tz
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 Test of independence can likewise be based on either series.  For the PIT series a 

common choice is the Ljung-Box (LB) test, a function of autocorrelation coefficients up to a 

specified maximum lag, which is approximately distributed as chi-square with that specified 

number of degrees of freedom under the null.  For their inverse normal transforms a widely 

used parametric test is due to Berkowitz (2001).  Under a maintained hypothesis of normality, 

the joint null hypothesis of correct mean and variance (‘goodness-of-fit’) and independence is 

tested against a first-order autoregressive alternative with mean and variance possibly 

different from (0,1).  A likelihood ratio test with three degrees of freedom is based on the 

estimated mean, regression coefficient and error variance of the equation 

  ( )1t t t ( )z zμ ρ μ−− = − +ε ,   2~ 0,t Nε εσ .     (2) 

A test of the significance of the estimate of ρ  gives a test of the independence component 

alone.  An extension due to Bao, Lee and Saltoglu (2004, 2007) is to specify a flexible 

alternative distribution for tε  which nests the normal distribution, their example being a 

semi-parametric density function, and include the additional restrictions that reduce it to 

normality among the hypotheses under test. 

 

2.3. Scoring rules, distance measures and sharpness 

Scoring rules evaluate the quality of probability forecasts by assigning a numerical score 

based on the forecast and the subsequent realisation of the variable.  Their literature 

originates in the mid 20th century, with the quadratic score for probability forecasts of a 

categorical variable, due to Brier (1950), and the logarithmic score for forecasts of a 

continuous variable, originally proposed by Good (1952).  Sharpness entered the forecasting 

lexicon with the decomposition of the Brier score into two components by Sanders (1963), 

respectively measuring the ‘validity’ and ‘sharpness’ of the forecasts.  Subsequent 

terminology equates validity with calibration or reliability, and sharpness with refinement or 

resolution (see Kroese and Schaafsma, 2006); both components are functions of the forecast-

observation pairs, unlike ‘sharpness’ as redefined by GBR. 

 

 The logarithmic score for forecast density jtf  is defined as 

  ( ) (log log )j t jtS x f x= t . 

To a Bayesian the logarithmic score is the predictive likelihood, and if two forecasts are 

being compared, the log Bayes factor is the difference in their logarithmic scores: see 
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Geweke and Amisano (2009) for a comparison of five forecasting models using predictive 

likelihood functions.  If one of the forecasts is the correct conditional density , the ‘ideal’ 

forecast, then the expected difference in their logarithmic scores is the Kullback-Leibler 

information criterion (KLIC) or distance measure 

tg

  { } { }KLIC log ( ) log ( ) ( )t t t jt t t tE g x f x E d x= − = , 

say, where the expectation is taken in the correct distribution.  Interpreting the difference in 

log scores, , as a density forecast error, the KLIC can be interpreted as a mean error in 

a similar manner to the use of the mean error or bias in point forecast evaluation. 

( )t td x

 

 To develop a KLIC-based test for density forecast evaluation, Bao, Lee and Saltoglu 

(2004, 2007) and Mitchell and Hall (2005) replace E by a sample average and use 

transformed variables .  Then the density forecast error can be written tz

  ( ) ( ) ( )log logt t jt t td x h z zφ= −  

where is the density of  and (.)jth tz (.)φ  is the standard normal density.  As above, the 

attraction of using transformed variables  is that it is not necessary to know , but simply 

that, under the null that  is correct, the distribution of  is standard normal.  Except in 

simulation experiments  is unknown, but as discussed following equation (2), above, it 

may be parameterised so that it nests 

tz tg

tg tz

(.)jth

(.)φ . 

 

 For two density forecasts jtf  and ktf , these authors also develop a test of equal 

predictive accuracy based on their KLIC difference.  Again replacing E by a sample average, 

but without transforming the data, a likelihood ratio test of equal forecast performance is 

based on the sample average of 

  log ( ) log ( )jt t kt tf x f− x . 

Amisano and Giacomini (2007) develop the same test by starting from the logarithmic score 

as a measure of forecast performance. 

 

 Returning to the analogy with point forecast evaluation suggested by the 

interpretation of  as a density forecast error, we recall that tests of efficiency of point 

forecasts are often based on correlations between forecast errors and variables which might 

( )t td x
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reasonably be considered to be part of the information set available to the forecaster.  A 

significant correlation indicates that the variable in question could have been used to predict 

the forecast error and hence improve the forecast: the original forecast is thus shown to be 

inefficient.  A finding of efficiency is seldom conclusive, however, as long as the possible 

existence of an untested variable which might lead to rejection remains.  We propose parallel 

tests of efficiency of density forecasts based on the orthogonality of the density forecast error 

to a k-dimensional information set .  For this purpose elements of  are introduced into 

the conditional mean of the density , and their significance is tested via a likelihood 

ratio test.  A regression as in equation (2), again with possibly more general distributional 

assumptions, is a convenient setting for this procedure.  We note that Berkowitz (2001, 

p.468) suggests that the regression equation used to implement his test could be augmented 

by variables that ‘might indicate missing factors that should be included in the underlying 

forecast model’, although he does not pursue this. 

tW tW

(.)jth

 

 Finally we note that some simple relations are available when density forecasts are 

based on normal distributions, as in the examples in the next two sections.  Then the expected 

logarithmic score of the correct conditional density is a simple function of its forecast 

variance (sharpness/concentration/precision), namely 

  { } ( )21 1
2 2log ( ) log 2g gE g x πσ= − − . 

For a competing forecast ( )f x  we obtain the KLIC, subscripting parameters appropriately, 

as 

  { } ( ) ( )22
2 21 1 1

2 2 2 2 2log ( ) log ( ) log
2

g fg
g g f

f f
E g x f x

μ μσ
σ σ

σ σ

−
− = − − + + . 

The KLIC has a minimum at zero: the sum of the first three terms on the right-hand side is 

non-negative, as is the fourth term.  Thus a positive KLIC may result from departures in 

mean and/or variance in either direction, and additional investigation, via the PIT histogram, 

for example, is needed to discover the direction of any departure.  The competing forecast 

may be too sharp or not sharp enough, indicated by a U-shaped or hump-shaped PIT 

histogram, respectively, but the sharpness criterion, being ‘subject to calibration’, would not 

arise if the forecast was already rejected by any of the tests described above. 
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3. GBR’s example 

 

The scenario for the simulation study is that, each period, nature draws a standard normal 

random number tμ  and specifies the data-generating distribution .  Four 

competing forecasts are constructed.  The ideal forecaster conditions on the current state and 

issues the forecast 

( ,1t tG N μ= )

ttF G= .  The ‘climatological’ forecaster, having historical experience in 

mind, takes the unconditional distribution (0,2)tF N=  as their probabilistic forecast.  The 

remaining two forecasts are based on mixtures of models, motivated by an example of Hamill 

(2001).  Hamill’s forecaster is a master forecaster who assigns the forecasting problem with 

equal probability to any of three student forecasters, each of whom is forecasting incorrectly: 

one has a negative bias, one has a positive bias, and the third has excessive variability.  Thus 

the forecast distribution is ( )2,t t tN μ δ σ+ , where ( )2, (0.5,1),  ( 0.5,1) or (0,1.69)t tδ σ = − , 

each with probability one-third.  Similarly GBR’s ‘unfocused’ forecaster observes the current 

state but adds a distributional bias as a mixture component, giving the forecast distribution 

( ) ( ){ }0.5 ,1 ,1t t tN Nμ μ τ+ +  where 1tτ = ± , each with probability one-half.  With 10,000 

random draws of tx  from , GBR obtain the PIT histograms for the four forecasters shown 

in Figure 1 (reproduced from the original).  The four PIT histograms are ‘essentially 

uniform’, which ‘is a disconcerting result’ (2007, p. 245), because these PIT histograms 

tG
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cannot distinguish the ideal from the competing forecasts: all four forecasts are 

probabilistically calibrated. 

 

 The climatological or unconditional forecaster is the first of the ideal forecaster’s 

indistinguishable competitors.  Its distribution is correctly stated, but in typical time series 

forecasting problems time dependence gives simple criteria for distinguishing between 

conditional and unconditional forecasts.  Autocorrelation in the point forecast errors or 

density forecast PITs can be expected from an unconditional forecast, denying the 

independence component of Dawid’s calibration condition.  However the GBR example is 

concerned with forecasting white noise.  It has the same structure as an example given by 

Granger (1983), in a paper entitled ‘Forecasting white noise’, although his formulation takes 

an explicit time-series forecasting perspective: ‘if 1t t tx y − e= +  where ,  t ty e  are independent, 

pure white noise series, then if ty  is observable, tx  will be pure white noise but forecastable 

... Thus, tx  is not forecastable just from its own past but becomes forecastable when past 

values of ty  are added to the information set’ (1983, p.308).  From a practical forecasting 

perspective, in discrete time, the assumption in GBR’s example that the state variable tμ  is 

observable at time t but the outcome tx  is not has an economic counterpart in which state 

variables such as tax rates are known in advance but outcomes are known only after some 

data delivery delay, hence the interest in ‘nowcasting’.  However, forecasting a white noise 

process is scarcely a representative example in time-series forecasting, and to better motivate 

a fuller discussion of relevant criteria we introduce time dependence in a second example in 

the next section. 

 

 The remaining forecasts are based on model mixtures or switching models, in which 

the forecast issued is one of two (the unfocused case) or three (Hamill’s) possible forecasts, 

none of which have the correct distribution, chosen at random.  This is in direct contrast to 

the forecast combination literature, which since the seminal article by Bates and Granger 

(1969) has considered situations in which multiple forecasts of the same variable are 

available at each point in time.  Several competing models might be in use simultaneously, 

several individuals might provide their different forecasts in response to a survey, and so on; 

Timmermann (2006) provides a recent survey of research on forecast combinations.  If we 

assume, in contrast to GBR’s approach, that the two or three component forecasts in each of 
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these cases are all available at each point in time, and are combined or pooled in accordance 

with this literature, then we find that the resulting finite mixture distribution forecasts have 

non-uniform PITs and can be readily distinguished from the ideal forecast. 

 

 To assess sharpness, GBR subsequently report the average width of central 50% and 

90% prediction intervals for the four forecasters, and their mean log scores over the sample of 

10,000 replications.  Both rank the ideal forecaster best, followed by Hamill’s, the unfocused 

and the climatological forecaster.  No statistical testing is undertaken, of the coverage of the 

prediction intervals, or of the significance of the differences in log scores, for example. 

 

 We remedy this omission by utilising the evaluation procedures discussed in Section 

2.  We reproduce GBR’s experiment and construct 500 replications of an artificial sample of 

size 150.  For the statistical tests described in Section 2.2 the results are exactly in accordance 

with the informal appraisal of the PIT histograms.  We find that three tests of fit and two tests 

of independence all have rejection frequencies close to the nominal size of the tests, which 

we set at the usual 5% level.  Thus the ‘disconcerting result’ continues to apply, now with the 

sense that, in this white noise context, all four forecasts are completely calibrated.  However 

we find that the KLIC-based procedures discussed in Section 2.3 are able to distinguish the 

ideal forecast from its competitors.  In 500 replications the KLIC-based test always rejects 

the unconditional forecaster, while the rejection frequencies for the unfocused forecaster and 

Hamill’s forecaster are respectively 88% and 82%.  These results yield clear discrimination 

between the ideal forecast and its competitors. 

 

 In sum, its use of a white noise data generating process and its unusual approach to 

forecast combination, together with the shortage of formal evaluation procedures, make 

GBR’s example an unrealistic guide to developments in this area. 

 

 

4. Forecasting an autoregressive process 

 

4.1. The ideal forecast and five competing forecasts 

Consider the Gaussian second-order autoregressive data generating process 

( )2
1 1 2 2 ,  ~ 0,t t t t tY Y Y N εφ φ ε ε σ− −= + + . 
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The true or ‘ideal’ forecast distribution of  given an information set tY tΩ  comprising 

observations 1ty −  and 2ty − , the model and its parameter values is 

  ( )2
1 1 2 2,t t tG N y y εφ φ σ− −= + . 

The ‘climatological’ or unconditional probability forecast is 

  ( )20,U t yF N σ=  

where ( )2 2
1 1 2 21 yφ ρ φ ρ σ= − − ,  1, 2i i and εσ = , are autocorrelation coefficients: ρ

  ( )1 1 21ρ φ φ= − ,  2 1 1 2ρ φ ρ φ= + . 

The second-order autoregression is a relatively simple model, but it gives sufficient scope for 

constructing some competing forecasts that can be expected to deliver uniform PITs, as in 

GBR’s example.  We recall that probabilistic calibration holds whenever the density forecast 

is the correct conditional density with respect to its specific information set. 

 

 We consider a variant forecaster who assumes that the data are generated by a first-

order autoregression and issues the forecast 

  ( )2
1 1 1,t tF N y 1ρ σ−=  

while, with the same assumption, a further variant is subject to a one-period data delay, so the 

forecast is 

  ( )2
2 2 2,t tF N y 2ρ σ−= , 

where ( )2 2
1 11 2

yσ ρ σ= −  and ( )2
2
2

21 2
yσ ρ σ−= .  We assume that these forecasters use least-

squares regression of ty  on its relevant lagged value to estimate the required coefficient and 

the associated residual variance, but as above we neglect parameter estimation error and use 

the corresponding ‘true’ values.  In our tables we label them AR1 and AR2 respectively. 

 

 Next is an ‘averaging’ forecaster who knows that forecast combination can often be of 

benefit and so constructs the equally-weighted combined forecast 

( ) ( )2 2
1 1 1 2 2 20.5 , 0.5 ,Ct t tF N y N yρ σ ρ− −= + σ , 

which is an example of a finite mixture distribution (Wallis, 2005).  The composite 

information set for the combined density forecast is identical to the information set of the 

ideal forecast density: both include the same two observations.  However the combined 
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forecast uses the information inefficiently, relative to the ideal forecast.  It yields, despite the 

fact that the true distribution is Gaussian, a mixture normal density forecast. 

 

 Finally, in contrast with the combined forecast we follow GBR’s example and 

consider an ‘unfocused’ forecaster who uses a mixture of models, switching between them at 

random.  As in their example, each model adds distributional bias to the ideal forecast, thus 

  ( ){ }2
1 1 2 20.5 ,Mt t t t tF G N y y εφ φ τ σ− −= + + + , 

where tτ  is either 1 or –1, each with probability one-half, but the biases are again expected to 

be offsetting. 

 

 The performance of these six forecasts is assessed in a simulation study, using the 

evaluation criteria discussed above.  To assess the effect of time dependence on the 

performance of these criteria we consider four pairs of values of the autoregressive 

parameters 1φ  and 2φ , as shown in Table 1.  Each delivers a stationary process, with differing 

degrees of autocorrelation, also as shown in Table 1.  Although integrated series are prevalent 

in macroeconomics, forecasting typically focuses on transformed variables that are nearer to 

stationarity, such as inflation rather than the price level, and growth rather than the output 

level.  Inflation and GDP growth are the variables for which several central banks currently 

publish density forecasts.  Case (1) represents a relatively persistent stationary series, whereas 

case (2) exhibits less persistence than is observed in inflation and GDP growth.  The structure 

of case (3) is such that the AR1 forecast  coincides with the unconditional forecast , 

while the AR2 forecast  coincides with the ideal forecast , thus the combined forecast 

 is a combination of the correct conditional and unconditional forecasts in this case.  Case 

(4) represents a rather unusual oscillating form.  We report results based on 500 replications 

and a sample size , which is typical of applications in macroeconomics. 

1tF UtF

2tF tG

CtF

150T =

 

4.2. PIT histograms 

We first present histograms of PIT values, to allow an informal assessment of their 

uniformity and hence of probabilistic calibration in GBR’s sense.  This is expected to hold for 

the first four forecasts, since each of these states the correct conditional distribution in respect 

of its normality and its first two moments conditional on the past data utilised by the 

forecaster.  The results presented in Figure 2 are then completely as expected. 
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Fig. 2.  PIT histograms in Cases (1)-(4) for (a*) ideal, (b*) climatological, (c*) AR1, 

(d*) AR2, (e*) combination and (f*) unfocused forecasters 
 
 
 The PIT histograms in all columns of Figure 2 but the fifth are ‘essentially uniform’: 

they cannot distinguish the ideal forecast from these competitors.  Its fourth competitor, the 

combination forecast, despite being a combination of densities which each deliver uniform 

PITs, has too great a variance in all cases, hence all four PIT histograms in the fifth column 

of Figure 2 have a humped shape.  This is most striking in case (3) where, of the two 

forecasts being combined, the AR1 forecast, which here coincides with the unconditional 

forecast, has an error variance ten times greater than that of the AR2 or ideal forecast. 

 
4.3. Statistical tests 

We first consider the goodness-of-fit tests discussed in Section 2.2.  Table 2 reports the 

rejection percentages across 500 replications for the KS and AD tests of uniformity of the 

PITs and the DH test of normality of their inverse normal transforms, all at the nominal 5% 

level, for each of the six density forecasts.  For the KS and AD tests we use simulated critical 

values for the sample size of 150, while the DH test statistic is approximately distributed as 

chi-square with two degrees of freedom under the null. 
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 The results show that the goodness-of-fit tests tend not to reject any of the conditional 

forecasts.  The rejection rates for the ideal forecasts, which have white noise errors, are not 

significantly different from the nominal 5% level.  Autocorrelation clearly affects the 

performance of the tests for the two variant forecasts and their combination, but, in general, 

the rejection rate is not greatly increased.  The unconditional or ‘climatological’ forecast has 

the greatest error autocorrelation, and this is associated with a substantial increase in the 

rejection rates of the goodness-of-fit tests.  In case (3) the AR1 forecast and the unconditional 

forecast coincide, and the high rejection rate in this case also spills over to the combined 

forecast.  In other cases these tests suggest that the combined forecast’s normal mixture 

distribution appears not to deviate too much from normality.  Nevertheless, given its non-

normal distribution, the results in the fifth row suggest that the AD test has a slight advantage 

in power over the KS test, which is consistent with results obtained by Noceti, Smith and 

Hodges (2003) for white noise data. 

 

 Turning to tests of independence, we consider the Ljung-Box test based on 

autocorrelation coefficients of the PIT series up to lag four, and the likelihood ratio test of 

Berkowitz (2001) based on the  series, as discussed in Section 2.2.  In the present 

experiment the first four forecasts have mean and variance of  equal to (0,1), so here the 

test is in effect a test of the first-order autocorrelation coefficient of the point forecast errors. 

tz

tz

 

 The results in Table 3 show that adding a test of independence to the evaluation tool-

kit immediately enables us to distinguish the ideal forecast from all the competing forecasts 

except the ‘unfocused’ mixture of models.  The rejection rates for the ideal forecasts are close 

to the nominal size of the (asymptotic) tests, and adding a random bias does not induce 

autocorrelation, as seen in the last row of the table.  For the remaining forecasts the tests have 

good power: in case (1), a relatively persistent series, there are no Type 2 errors in our 500 

replications for any of the competing forecasts.  This is also true of the unconditional 

forecasts in cases (3) and (4).  Whereas Figure 2 might be thought to represent a 

‘disconcerting result’ since it does not distinguish the ideal forecast from four of its 

competitors, we see that considering complete calibration – not only uniformity but also 

independence of the PITs – delivers the desired discrimination in three of these cases. 
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4.4. Scoring rules, distance measures and KLIC-based tests 

Average logarithmic scores and hence KLICs can be calculated from simulation results, and 

in the present example we can also calculate expected logarithmic scores for four of our 

forecasts using expressions akin to those presented at the end of Section 2.3.  For the two 

forecasts with mixture components, the corresponding expectation can be obtained by 

numerical integration.  Table 4 then reports the KLIC value together with the average 

logarithmic score for each forecast (both multiplied by 100); with the present sample size and 

number of replications the simulation-based average score scarcely deviates from the 

expected score calculated analytically. 

 

 Since the KLIC of a given forecast is the expected difference between its logarithmic 

score and that of the ideal forecast, the two criteria in Table 4 rank the forecasts identically.  

The differences reflect the value of the information used by each forecast in each case, except 

that the cost of the unfocused forecaster’s addition of random biases to the ideal forecast is 

not affected by the persistence of the series.  The unconditional or climatological forecast 

uses no information from past data and is ranked last except in case (2), where the data are 

least persistent.  The AR1 and AR2 forecasts use only a single past observation and occupy 

intermediate ranks, as does their equally-weighted combination.  In each of cases (2) and (4) 

the two AR forecasts perform rather similarly, and their equally-weighted combination 

achieves an improvement.  On the other hand in cases (1) and (3) the two AR forecasts have 

rather different scores so the optimal weights for a combined forecast are rather different 

from equality, and the equally-weighted combination takes an intermediate value. 

 

 Whether the summary information in Table 4 represents significant differences in 

forecast performance is assessed by the log score or KLIC-based test discussed in Section 

2.3.  We test each of the competing forecasts against the ideal forecast, and report rejection 

percentages across the 500 replications in Table 5.  (We remember that in case (3) the AR2 

forecast coincides with the ideal forecast.)  The rejection rate for the unfocused forecaster is 

seen to be close to the rejection rate for this forecaster that we obtained in the GBR example 

(Section 3), while in several other cells of the table it reaches 100%.  Again the power of the 

test is lowest in case (2), where time dependence is below the levels commonly observed and 

these time-series forecasts are relatively similar to one another.  In the more typical cases, the 

test is shown to provide clear discrimination between the ideal forecast and its competitors, 

despite their uniform PIT histograms. 
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 Finally we turn to a test of density forecast efficiency as proposed in Section 2.3.  In 

the present example the information set is quite small, containing no extraneous variables, 

nevertheless the different forecasts make different use of the available lagged values 1ty −  and 

2ty − , and we study the ability of the test to discriminate between more or less efficient uses 

of this information.  To implement the test we add test variables from the information set to 

the regression equation (2).  Since the regression equation already contains the lagged density 

forecast error, it is immediately clear that, in some cases, the addition of test variable(s) will 

result in perfect collinearity, hence this exercise is subject to some limitations.  Cases which 

as a result cannot be implemented are indicated by “n.a.” in the relevant cells of Table 6.  

Otherwise, Table 6 reports the relative frequency, across 500 replications, with which the null 

hypothesis of efficiency is rejected, by virtue of the significance at the 5% level of the 

coefficient(s) of the added variable(s). 

 

 The results in Table 6 show that the performance of the test varies with the amount of 

autocorrelation in the data, which provides an indication of the amount of information that is 

lost by inefficient use of the available variables.  In case (1) the data are most highly 

autocorrelated and the test performs very well, with rejection rate equal to the size of the test 

for the ideal forecaster, and very high power to reject the null hypothesis of efficiency for all 

competing forecasts.  This power is then reduced as the autocorrelation falls, with case (2) the 

weakest, nevertheless the performance of the new test is encouraging.  The source of 

inefficiency in the unfocused forecast is the bias that is mixed into the ideal forecast, and this 

bias is not sensitive to the present test; the rejection rates, not reported, are very similar to 

those of the ideal forecast. 

 

 The data in this example exhibit varying degrees of time dependence, and we see that 

established criteria provided an adequate basis for distinguishing between competing 

forecasts.  To evaluate density forecasts there is no need to place additional emphasis on their 

sharpness/concentration/precision, beyond the extent to which it is already subsumed in 

existing information-based methods. 
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5. Conclusion 

 

Density forecasts are receiving increasing attention in time-series forecasting.  They are 

becoming increasingly prevalent, which can only be welcomed, and methods of assessment 

are becoming increasingly available.  This paper reviews some currently-available procedures 

for density forecast evaluation and considers a recent proposal by Gneiting, Balabdaoui and 

Raftery (2007) to add a ‘sharpness’ criterion to the existing tool-kit. 

 

 Since Dawid (1984), the basic foundation of density forecast evaluation, on which 

many subsequent developments rest, has been a two-component calibration criterion, 

requiring uniformity and independence of the PITs, which we term complete calibration.  In 

the example which motivates GBR’s proposal, the first component of these two cannot 

distinguish between the ideal forecast and its competitors, and the second is irrelevant, 

because their example has no time dimension.  This is a surprising omission in an article that 

opens with the statement that ‘A major human desire is to make forecasts for the future’, and 

it might in turn be said to make their example irrelevant.  An artificial construct in which 

there is no connection between present and future is an insecure foundation for a claim about 

the adequacy or otherwise of existing forecast evaluation methods.  Moreover their 

indistinguishable competing forecasts are constructed using an approach to forecast 

combination which is at variance with the existing forecast combination literature; 

nevertheless we show that information-based methods are able to supply the required 

discrimination.  In our alternative example, in which the variable we wish to forecast exhibits 

typical time dependence, we show that the complete calibration criterion and information-

based methods are fit for purpose. 

 

 The simulation exercises considered in this paper are representative of one strand of 

the general forecast comparison literature, in which researchers have considered a wide range 

of forecast construction and evaluation issues by constructing several competing forecasts 

themselves, and studying their forecast performance.  When artificial data are employed, as 

here, the data generating process and hence the optimal point or density forecast is known, 

and this will provide the best or ‘sharpest’ forecasts.  When real data are employed, the 

optimal forecast is not known, but the winning forecast is usually selected according to the 

same criteria.  A second strand of the forecast comparison literature studies the real-time 

forecasts supplied by respondents to forecast surveys or collected by researchers from 
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forecast publications; in economics the best-known survey is the US Survey of Professional 

Forecasters.  In general little is known about the statistical methods and models on which 

these forecasts are based, and there is typically an input of individual judgement.  For interval 

and density forecasts, it is possible that this results in underestimation of uncertainty.  Such a 

finding is reported by Giordani and Soderlind (2003), who study the coverage of interval 

forecasts of US inflation constructed from probability forecasts reported by respondents to 

the SPF, and find that the intervals are too narrow.  Whereas in theoretical exercises the best 

forecast is known and it is difficult to construct competing forecasts that are too ‘sharp’, 

except by subjective intervention, there are practical circumstances in which a preference for 

the ‘sharpest’ forecast is likely to lead the forecast user astray.  To emphasise ‘sharpness’ in 

this way is not generally recommended. 
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Table 1.  Simulation design* 
 

                   Parameter             Autocorrelation 
 1φ 2φ 1ρ 2ρ  
  
Case (1) 1.5 –0.6 0.94 0.80 
Case (2) 0.15 0.2 0.19 0.23 
Case (3) 0 0.95 0 0.95 
Case (4) –0.5 0.3 –0.71 0.66 
  

           * 2
εσ =1 in all cases 

 
 
 
 
 

Table 2.  Goodness-of-fit tests: rejection percentages at nominal 5% level* 
 

Forecast       Case (1) Case (2) Case (3) Case (4) 

 KS AD DH KS AD DH KS AD DH KS AD DH 

           

Ideal   4.6 4.4 6.4 4.0 4.4 6.2 4.2 4.2 5.4   6.0 5.2 6.0 

Climt 60 66 43 14 18 6.0 86 89 56 4.4 8.4 5.0 

AR1 0.8 1.0 6.4 9.4 8.8 6.6 86 89 56 13 16 5.6 

AR2 6.6 8.6 12 7.8 6.8 5.6 4.2 4.2 5.4 0.2 0 3.0 

Combo   5.6 6.0 8.2 7.8 8.0 6.0 93 97 11 6.8 7.2 7.8 

Unfocus 4.0 5.2 6.4 5.2 4.8 4.6 6.6 5.8 6.2 5.2 5.0 5.4 

*Monte Carlo standard error  under H .  KS is the Kolmogorov-Smirnov test, AD the 
Anderson-Darling test and DH the Doornik-Hansen test. 

1%≈ 0
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Table 3.  Tests of independence: error autocorrelations and rejection percentages 
 

Forecast           Case (1)        Case (2)           Case (3)         Case (4) 

 1( )eρ  LB Bk 1( )eρ LB Bk 2( )*eρ LB Bk 1( )eρ  LB Bk 

             

Ideal       0  4.4  4.2     0 3.8 4.6     0  6.2 5.6      0  5.2  3.4 

Climt .94 100 100   .19  68 53  .95 100  99 –.71 100 100 

AR1 .56 100 100 –.04  43 17  .95 100  99   .21  78  62 

AR2 .77 100 100   .15  24 30     0  6.2 5.6 –.35  99  97 

Combo   .73 100 100   .06  16 14  .80  98 100 –.16  35  62 

Unfocus –.01  4.4  3.8 –.01 5.0 5.4 –.01  5.0 5.0 –.01 4.6 4.2 

* 1 ( ) 0e = 1 ( )e for all forecasts in Case (3) except the unfocused forecast, where ρ ρ is 
repeated.  LB is the Ljung-Box test and Bk the likelihood ratio test of Berkowitz (2001) 

 
 
 
 
 

Table 4.  Additional evaluation criteria: KLIC and (negative) average logarithmic score 
 

Forecast              Case (1)  Case (2)  Case (3)  Case (4) 

   KLIC   –logS   KLIC   –logS   KLIC   –logS   KLIC   –logS 

         

Ideal         0 142        0 142       0 142        0 142 

Climt   128 270   3.83 145   117 258   39.6 182 

AR1     22 164   2.04 144   117 258     4.8 147 

AR2     75 217   1.16 143       0 142   11.9 154 

Combo       43 185   0.71 142     35 177     3.3 145 

Unfocus     11 153   11.0 153     11 153   11.0 153 
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Table 5.  Tests of KLIC differences vs. the ideal forecaster: rejection percentages 
 

Forecast Case (1) Case (2) Case (3) Case (4) 

Climt 100 39 100 100 

AR1 98 25 100 46 

AR2 100 15  n.a. 93 

Combo   100 10 100 55 

Unfocus 87 87 87 90 

 
 
 
 
 
 

Table 6.  Tests of efficiency: rejection percentages at nominal 5% level 
 

Forecast Added 
regressor 

Case (1) Case (2) Case (3) Case (4) 

Ideal 1ty −  5 6 2 5 

 2ty −  5 6 8 5 

 both 7 5 10 4 

Climt 1ty −  n.a. n.a. n.a. n.a. 

 2ty −  100 60 100 93 

 both n.a. n.a. n.a. n.a. 

AR1 1ty −  97 50 n.a. 67 

 2ty −  97 56 100 67 

 both n.a. n.a. n.a. n.a. 

AR2 1ty −  98 6 2 24 

 2ty −  100 8 8 37 

 both 100 8 10 100 

Combo   1ty −  99 7 48 20 

 2ty −  100 15 99 18 

 both 100 12 99 16 
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