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Optimal prediction pools: Econometric motivation

There are often several models relevant for a decision

VAR�s (Vector autoregression models)
DSGE�s (Dynamic stochastic general equilibrium models)
DFM�s (Dynamic factor models)

Decision makers know that all of these models are
simpli�cations

i.e., they are wrong.

Bayesian and non-Bayesian methods assume one of the
models is true.
What happens if we remove this assumption?
Geweke and Amisano (2009), Geweke (2010):

Detail on methodology
Application to asset returns

This work: Optimal prediction pools of leading
macroeconomic forecasting models
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Optimal prediction pools

Notation

The setting

Time series fytg
History Yt�1 = fy1, . . . , yt�1g
Prediction model A: a probability density p (yt ;Yt�1,A)

Formal Bayesian approach:

p
�
yt ;Yot�1,A

�
= p

�
yt j Yot�1,A

�
=

Z
p
�
yt j Yot�1, θA,A

�
p
�
θA j Yot�1,A

�
dθA

Common non-Bayesian approach:bθt�1A = ft�1
�
Yot�1

�
,

p
�
yt ;Yot�1,A

�
= p

�
yt j Yot�1,bθt�1A ,A

�

What matters: A produces a legitimate p.d.f. for yt , relying
only on Yt�1 and A.
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Optimal prediction pools

Log scoring

Log scoring

Log predictive score:

LS (YoT ,A) =
T

∑
t=1
log p (yot ;Y

o
t�1,A)

Formal Bayesian approach

p (yot ;Y
o
t�1,A) = p (yot j Yot�1,A) ,

LS (YoT ,A) = p (YoT j A) =
Z
p (YoT j θA,A) p (θA j A) dθA

Common non-Bayesian approach:

LS (YoT ,A) =
T

∑
t=1
log p

�
yot j Yot�1,bθt�1A ,A

�
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Optimal prediction pools

De�nitions

Prediction pools of multiple models

In a prediction pool with n models the log predictive score
function is

fT (w) =
T

∑
t=1
log

"
n

∑
i=1
wip (yot j Yot�1,Ai )

#

where w = (w1, . . . ,wn)
0, wi � 0 (i = 1, . . . , n) and

∑ni=1 wi = 1.

For an ergodic data generating process D,

T�1fT (w)
a.s .! lim

T!∞
T�1

Z
log

"
n

∑
i=1
wip (yt j Yt�1,Ai )

#
�p (YT jD) dν (YT ) = f (w) .

Some short-hand:

pti = p (yot ;Y
o
t�1,Ai ) (t = 1, . . . ,T ; i = 1, . . . , n)
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First derivative (after substituting w1 = 1�∑n
i=2 wi ):

∂fT (w) /∂wi =
T

∑
t=1

pti � pt1
∑n
j=1 wjptj

(i = 2, . . . , n)

Second derivative: ∂2fT (w) /∂wi∂wj

= �T�1
T

∑
t=1

(pti � pt1) (ptj � pt1)
[∑n
k=1 wkptk ]

2 (i , j = 2, . . . , n)

fT (w) is a concave function.
Given the evaluations pti from the alternative prediction
models and a sample, �nding w�T = argmaxw fT (w) is a
straightforward convex programming problem.
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Population behavior

Population behavior
Review of model averaging and selection

Recall that for each model Aj , T�1LS (YT ,Aj )
a.s .!

lim
T!∞

T�1
Z " T

∑
t=1
log p (yt ;Yt�1,A)

#
p (YT jD) dν (YT )

Hence for all interesting pairs Ai and Aj ,

LS (YT ,Ai )� LS (YT ,Aj )
a.s .! �∞.

As a consequence

Bayesian procedures assign probability 1 to one model
asymptotically
Non-Bayesian testing procedures select the same model
asymptotically.
Asymptotically, these procedures all use a pseudo-true model
with pseudo-true parameter values for prediction.
This is the wrong answer under a log scoring rule.
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Limiting behavior of optimal prediction pools

The population function

f (w) = lim
T!∞

T�1fT (w) = lim
T!∞

T�1
T

∑
t=1
log

 
n

∑
i=1
wipti

!
is also concave.
De�ne w� = argmax f (w)

w�T
a.s .! w�

Typically several elements of w� are nonnegative...
Despite the fact that both Bayesian and non-Bayesian methods
will use just one model in prediction asymptotically.

What is the explanation?

Conventional Bayesian and non-Bayesian procedures assume
Aj = D for some j = 1, . . . , n.
Optimal log scoring does not make this assumption.
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What is the explanation?
Conventional Bayesian and non-Bayesian procedures assume
Aj = D for some j = 1, . . . , n.
Optimal log scoring does not make this assumption.
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Overview of the models

Vector autoregression (VAR)

Dynamic stochastic general equilibrium model (DSGE)

Dynamic factor model (DFM)

In each case we used a variant of the model and a method of
Bayesian inference representative of current practice at central
banks.

Caveat:

Work with several alternative variants is currently proceeding.
The initial results presented today may or may not
be representative of results with these variants.
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Data: An extension of Smets and Wouters (2007)

Quarterly U.S. data, 1951:I - 2009:I

1 Consumption: growth rate in per capita real consumption
2 Investment: growth rate in per capita real investment
3 Output: growth rate in per capita real GDP
4 Hours: log per capita weekly hours
5 In�ation: growth rate in GDP de�ator
6 Real wage: growth rate in real wage
7 Interest rate: Federal Funds Rate

Additional series for DFM

1 Stock returns: Growth rate in S&P 500 index
2 Unemployment rate
3 Term premium: 10 year and 3 month bond rates spread
4 Risk premium: BAA and AAA corporate bond spread
5 Money growth: Growth rate in M2
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Four lags of each variable
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Dynamic stochastic general equilibrium (DSGE) model

Model described in Smets and Wouters, AER 2007
DSGE model with nominal frictions: price and wage stickiness,
monopolistic competition.
�The marginal likelihood criterion, which captures the
out-of-sample prediction performance, is used to test the
[DSGE] model against standard and Bayesian VAR models.
We �nd that the [DSGE] model has a �t comparable to that
of Bayesian VAR models.� ( p. 587)
Unit root structure: some exogenous driving variables are I(1),
variables transformed to stationarity
Seven structural shocks: total factor productivity, risk
premium, investment speci�c tech shock, wage mark up, price
mark up, exogenous government spending, monetary shock
Bayesian inference with results based on posterior modal value
of parameters (as in DYNARE)
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Summary

Optimal pooling:

Does not assume one of the models is true
Weights are very di¤erent from Bayesian posterior probabilities
Many more properties in Geweke and Amisano (2009),
Geweke(2010)

In the optimal pool of VAR, DSGE and DFM models

All three models have positive weight and value
VAR has the highest weight, DFM the greatest value, and
DSGE the lowest weight and value
For marginal predictive densities (individual series) results are
varied
Strong indication that no model is (close to) DGP
Consistent with the observation that all three models are used
by central banks despite the fact that posterior odds
overwhelmingly favors DFM
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