Credit Constraints, Firms' Precautionary Investment, and the Business Cycle

Ander Perez

Universitat Pompeu Fabra

II Bank of Italy Conference on Macro Modeling in the Policy Environment

Rome 30 June - 1 July, 2009

 Broad theme: Implications for aggregate investment dynamics of endogenous borrowing constraints for firms

 Broad theme: Implications for aggregate investment dynamics of endogenous borrowing constraints for firms

Standard theoretical approach

- Broad theme: Implications for aggregate investment dynamics of endogenous borrowing constraints for firms
- Standard theoretical approach
 - Bernanke Gertler (1989), Kiyotaki Moore (1997), Bernanke Gertler Gilchrist (1999), Krishnamurthy (2003)

- Broad theme: Implications for aggregate investment dynamics of endogenous borrowing constraints for firms
- Standard theoretical approach
 - Bernanke Gertler (1989), Kiyotaki Moore (1997), Bernanke Gertler Gilchrist (1999), Krishnamurthy (2003)

Credit multiplier => prediction about the *amount* of investment

- Broad theme: Implications for aggregate investment dynamics of endogenous borrowing constraints for firms
- Standard theoretical approach
 - Bernanke Gertler (1989), Kiyotaki Moore (1997), Bernanke Gertler Gilchrist (1999), Krishnamurthy (2003)

- Credit multiplier => prediction about the *amount* of investment
- Quantitative significance questioned

- Broad theme: Implications for aggregate investment dynamics of endogenous borrowing constraints for firms
- Standard theoretical approach
 - Bernanke Gertler (1989), Kiyotaki Moore (1997), Bernanke Gertler Gilchrist (1999), Krishnamurthy (2003)
 - Credit multiplier => prediction about the *amount* of investment
- Quantitative significance questioned
 - Kocherlakota (2000), Cordoba and Ripoll (2004), Chari, Kehoe, McGrattan (2007)

- Broad theme: Implications for aggregate investment dynamics of endogenous borrowing constraints for firms
- Standard theoretical approach
 - Bernanke Gertler (1989), Kiyotaki Moore (1997), Bernanke Gertler Gilchrist (1999), Krishnamurthy (2003)
 - Credit multiplier => prediction about the *amount* of investment
- Quantitative significance questioned
 - Kocherlakota (2000), Cordoba and Ripoll (2004), Chari, Kehoe, McGrattan (2007)
 - Model misspecification, or financial frictions unimportant?

New approach: precautionary investment motive

New approach: precautionary investment motive

 intertemporal investment & frictions: motive for risk and liquidity management

New approach: precautionary investment motive

- intertemporal investment & frictions: motive for risk and liquidity management
- limited ability to use capital structure / markets to insure

New approach: precautionary investment motive

- intertemporal investment & frictions: motive for risk and liquidity management
- limited ability to use capital structure / markets to insure
- anticipation of future credit constraints may affect willingness to invest today and preference for the type of investment.

New approach: precautionary investment motive

- intertemporal investment & frictions: motive for risk and liquidity management
- limited ability to use capital structure / markets to insure
- anticipation of future credit constraints may affect willingness to invest today and preference for the type of investment.

Questions

New approach: precautionary investment motive

- intertemporal investment & frictions: motive for risk and liquidity management
- limited ability to use capital structure / markets to insure
- anticipation of future credit constraints may affect willingness to invest today and preference for the type of investment.
- Questions
 - Can precautionary motive resuscitate financial accelerator?

New approach: precautionary investment motive

- intertemporal investment & frictions: motive for risk and liquidity management
- limited ability to use capital structure / markets to insure
- anticipation of future credit constraints may affect willingness to invest today and preference for the type of investment.
- Questions
 - Can precautionary motive resuscitate financial accelerator?
 - Can it account for observed behavior of the composition of investment across the business cycle?

New approach: precautionary investment motive

- intertemporal investment & frictions: motive for risk and liquidity management
- limited ability to use capital structure / markets to insure
- anticipation of future credit constraints may affect willingness to invest today and preference for the type of investment.
- Questions
 - Can precautionary motive resuscitate financial accelerator?
 - Can it account for observed behavior of the composition of investment across the business cycle?

Broader agenda: credit frictions relevant mainly because of what firms do to avoid them?

New approach: precautionary investment motive

- intertemporal investment & frictions: motive for risk and liquidity management
- limited ability to use capital structure / markets to insure
- anticipation of future credit constraints may affect willingness to invest today and preference for the type of investment.
- Questions
 - Can precautionary motive resuscitate financial accelerator?
 - Can it account for observed behavior of the composition of investment across the business cycle?
- Broader agenda: credit frictions relevant mainly because of what firms do to avoid them?
 - ho~pprox buffer stock behaviour of consumers

Empirical Motivation CREDIT CONDITIONS AND SMALL FIRMS' INVESTMENT

- US Small Business Survey data (from NFIB)
 - Capital expenditures: % maintaining or increasing
 - Credit conditions: % seeing a worsening of credit availability

(日)、

Empirical Motivation CREDIT CONDITIONS AND SMALL FIRMS' INVESTMENT

US Small Business Survey data (from NFIB)

- Capital expenditures: % maintaining or increasing
- Credit conditions: % seeing a worsening of credit availability

Empirical Motivation R&D INVESTMENT ACROSS THE BUSINESS CYCLE

Figure: % variation in ratio of R&D expenditures as a share of total investment - Data for the United States from National Science Foundation

イロト イポト イヨト イヨト

э

Empirical Motivation

COMPOSITION OF INVESTMENT ACROSS THE BUSINESS CYCLE

Firm-level evidence

- Share of R&D and structural investment over total
 - Aghion et al. (2007), Barlevy (2007), Aghion et al. (2005)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Cash flow sensitivity of cash (Almeida et al. (2004))
- Aggregate evidence
 - Sensitivity of composition of investment to shocks in less financially developed countries (Aghion et al. (2005)).

Empirical Motivation

FIRMS' PRECAUTIONARY BEHAVIOR AND IMPORTANCE OF THE QUESTION

- Anticipation of future financing constraints affects firms' current behavior:
 - Real decisions: Caggese and Cunat (2007), Almeida et al (2004), (2006)
 - Financial behavior: Graham and Harvey (2001), Bancel and Mittoo (2002)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Surveys: NFIB, Fed Board SSBF
- Small and Medium Enterprises a significant portion of economic activity (half of private sector GDP in the U.S.)

▶ Introduce a Real Business Cycle model including:

▶ Introduce a Real Business Cycle model including:

Two sectors: corporate and entrepreneurial

Introduce a Real Business Cycle model including:

Two sectors: corporate and entrepreneurial

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Financial intermediaries

Introduce a Real Business Cycle model including:

Two sectors: corporate and entrepreneurial

- Financial intermediaries
- Motive for risk management

Introduce a Real Business Cycle model including:

- Two sectors: corporate and entrepreneurial
- Financial intermediaries
- Motive for risk management
 - Froot, Scharfstein and Stein (1993): avoid future constraints to avoid having to fore-go positive NPV projects.

Introduce a Real Business Cycle model including:

- Two sectors: corporate and entrepreneurial
- Financial intermediaries
- Motive for risk management
 - Froot, Scharfstein and Stein (1993): avoid future constraints to avoid having to fore-go positive NPV projects.

Financial constraints

Introduce a Real Business Cycle model including:

- Two sectors: corporate and entrepreneurial
- Financial intermediaries
- Motive for risk management
 - Froot, Scharfstein and Stein (1993): avoid future constraints to avoid having to fore-go positive NPV projects.
- Financial constraints
 - Limited commitment and collateral constraints as in Kiyotaki and Moore (1997)

Novel amplification mechanism: composition of investment & endogenous productivity

- Novel amplification mechanism: composition of investment & endogenous productivity
- Model accounts for cyclical variation in the composition of investment

Novel amplification mechanism: composition of investment & endogenous productivity

- Model accounts for cyclical variation in the composition of investment
- Also

- Novel amplification mechanism: composition of investment & endogenous productivity
- Model accounts for cyclical variation in the composition of investment
- Also
 - Amplification vs. dampening: crucially depends on persistence of productivity shocks

- Novel amplification mechanism: composition of investment & endogenous productivity
- Model accounts for cyclical variation in the composition of investment
- Also
 - Amplification vs. dampening: crucially depends on persistence of productivity shocks
 - Identification for ex-ante vs contemporaneous effect of credit constraints

- Novel amplification mechanism: composition of investment & endogenous productivity
- Model accounts for cyclical variation in the composition of investment
- Also
 - Amplification vs. dampening: crucially depends on persistence of productivity shocks
 - Identification for ex-ante vs contemporaneous effect of credit constraints

 Role of shocks to uncertainty in generating aggregate fluctuations

Contribution to the Literature

- Aggregate business cycle implications of endogenous borrowing constraints for firms
 - Bernanke and Gertler (1989), Kiyotaki and Moore (1997), Carlstrom and Fuerst (1997), Bernanke, Gertler and Gilchrist (1999), Krishnamurthy (2003)
- Corporate Finance: intertemporal links between financial constraints and investment
 - Thakor (1990), Froot, Scharfstein, and Stein (1993), Almeida, Campello and Weisbach (2004, 2008), Hennessy, Levy and Whited (2005), Caggese and Cuñat (2008)
- Effects on capital accumulation, real interest rates and output growth of uninsurable idiosyncratic risk
 - labor-income risk: Aiyagari (1994), Krusell and Smith (1998) / investment risk: Acemoglu and Zilibotti (1997), Angeletos and Calvet (2006)
Structure of Talk

- 1. Introduction
- 2. A General Investment Model to Fix Ideas
- 3. Partial Equilibrium Analysis of Entrepreneurial Investment
- 4. General Equilibrium and Dynamics: Response to Productivity Shock

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- 5. The Role of Financial Intermediaries
- 6. Conclusion

Partial-Equilibrium Investment Model - General Framework

Firm maximizes

$$V_0=E_0\sum_{t=0}^\infty M_{0,t}d_t,$$

where

$$\begin{array}{lcl} \mathcal{M}_{0,t} & = & {\rm stochastic \ discount \ factor} \\ d_t & = & \sum_j [f(k_{j,t}) + (1-\delta)k_{j,t} - k_{j,t+1}] \\ & & + b_{t+1} - (1+r_t)b_t \\ j & = & 1, ..., J \ {\rm are \ different \ projects \ firm \ can \ invest \ invest$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Financing Constraints

$$d_t \geq d^*$$
, where $d^* \leq 0$

Debt:

$$b_{t+1} \leq \overline{b}$$
.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

First Order Conditions

Investment (one for each type j of investment):

$$1 + \lambda_t = E_t \{ M_{t,t+1}[f'(k_{j,t+1}) + (1-\delta)](1 + \lambda_{t+1}) \}$$

Borrowing:

$$\mu_t = 1 + \lambda_t - E_t[M_{t,t+1}(1 + r_{t+1})(1 + \lambda_{t+1})]$$

where

 $\lambda_t = \text{shadow cost of equity finance}$ $\mu_t = \text{shadow cost of debt finance}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Financing Constraints only matter if shadow cost is time varying

• Effect of financial constraints fully captured by Ψ_{t+1} in

$$1 = E_t \{ M_{t,t+1} R_{j,t+1}^{l} \Psi_{t+1} \}$$

where

$$\Psi_{t+1} = rac{1+\lambda_{t+1}}{1+\lambda_t}$$

- Financing constraints only affect investment if they are time varying (Ψ_{t+1} ≠ 1).
 - Shadow value of constraint today relative to tomorrow matters.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Future Binding Constraints and the Composition of Investment

- Assume
 - Two investment alternatives $j = \{S, R\} = \{Safe, Risky\}$

$$f(k_{S,t}) = z_S k_{S,t}^{\alpha}$$

$$f(k_{R,t}) = z_{R,t} k_{R,t}^{\alpha},$$

- where
 - α < 1
 z_{R,t} captures idiosyncratic risk
 E_t(z_{R,t+1}) > z_S
 δ = 1
- $M_{t,t+1}$ is independent of $z_{j,t}$, λ_{t+1}
- How is the share of risky vs. safe investment affected by future credit constraints?

Future Binding Constraints and the Composition of Investment

Safe investment

$$1 + \lambda_t = \alpha z_S k_{S,t+1}^{\alpha - 1} E_t(M_{t,t+1}) E_t(1 + \lambda_{t+1})$$

overinvestment?

Risky investment

$$1 + \lambda_t = E_t(M_{t,t+1}) E_t[\alpha z_{R,t+1} k_{R,t+1}^{\alpha - 1} (1 + \lambda_{t+1})] \\ = E_t(M_{t,t+1}) \alpha k_{R,t+1}^{\alpha - 1} [Cov(z_{R,t+1}, \lambda_{t+1}) \\ + E_t(z_{R,t+1}) E_t(1 + \lambda_{t+1})]$$

Future Binding Constraints and the Composition of Investment

Ratio of risky to safe investment

$$\frac{k_{R,t+1}}{k_{S,t+1}} = \left(\frac{cov(z_{R,t+1},\lambda_{t+1}) + E_t(z_{R,t+1})E_t(1+\lambda_{t+1})}{z_S E_t(1+\lambda_{t+1})}\right)^{\frac{1}{1-\alpha}}$$

н.

- Persistence of idiosyncratic productivity process
- Jensen and Meckling (1976) risk-shifting result

Aggregate Risk

- Add aggregate risk: $f(k_{R,t}) = (A_t + z_{R,t}) k_{R,t}^{\alpha}$
- Risky investment

$$1 + \lambda_t = E_t(M_{t,t+1})E_t[\alpha (z_{R,t+1} + A_{t+1}) k_{R,t+1}^{\alpha - 1} (1 + \lambda_{t+1})]$$

= $E_t(M_{t,t+1})\alpha k_{R,t+1}^{\alpha - 1}[Cov(z_{R,t+1}, \lambda_{t+1}) + Cov(A_{t+1}, \lambda_{t+1})]$
+ $[E_t(z_{R,t+1}) + E_t(A_{t+1})]E_t(1 + \lambda_{t+1})]$

- Financing frictions: more important with good economic conditions?
 - Yes: Dow, Gorton, and Krishnamurthy (2003), Gomes, Yaron, and Zhang (2003)
 - No: Braun and Larrain (2005),...

Structure of Talk

- 1. Introduction
- 2. A General Investment Model to Fix Ideas
- 3. Partial Equilibrium Analysis of Entrepreneurial Investment
- 4. General Equilibrium and Dynamics: Response to Productivity Shock

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- 5. The Role of Financial Intermediaries
- 6. Conclusion

Model

Infinite horizon, discrete time economy

- Four agents
 - Households
 - Firms: produce consumption good using labor and investment goods
 - Entrepreneurs: produce the investment goods. Overlapping generations.
 - Financial intermediaries: channel savings from households to entrepreneurs

 3 goods: consumption good, investment good, entrepreneurial capital

The Economy

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへぐ

Partial Equilibrium Analysis of Entrepreneurs

- Risk-neutral and live for two full periods
- Investment opportunity when young and old
- Supply labor inelastically when young, receive wage w^e_t.

Maximize consumption at the end of their lifetimes.

Timeline of Events in the Lifetime of Entrepreneur

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Entrepreneurs

Budget constraint of "young":

$$p_t m_t + s_t = w_t^e + \sum_{i=L,U} \phi_t^i b_t^i,$$

Budget constraint of "old":

$$p_{t+1}m_{t+1}^i = n_{t+1}^i + b_{t+1}.$$

where:

$$\begin{aligned} &h_{t+1}^{L} = q_{t}g(m_{t}) - b_{t}^{L} + p_{t+1}(1-\delta)m_{t} + s_{t}(1+r_{t+1}) \\ &h_{t+1}^{U} = xm_{t} - b_{t}^{U} + p_{t+1}(1-\delta)m_{t} + s_{t}(1+r_{t+1}) \end{aligned}$$

where m_t : risky technology, s_t : safe alternative ($s_t \ge 0$), b_t^i : state-contingent repayment to/from bank, r_t : return on s, q_t :price of investment goods, x: idiosyncratic liquidity shock. $x \le 0$.

Precautionary Motive

Production technology of "old":

$$y_{t+1}^{old} = f(m_{t+1}), \ f'(\cdot) > 0, \ f''(\cdot) < 0$$

 Demand for insurance to smooth net worth at beginning of "old" age (second period).

Financial Friction, Optimal Contract and Imperfect Insurance

- Contract fully state contingent
 - First best contract: $b_t^L > 0$, $b_t^U < 0$, $b_t^L + b_t^U = 0$
- However, limited commitment and need to back all borrowing with physical assets:

$$b_t^i \leq \theta(1-\delta) \frac{p_{t+1}}{1+r_{t+1}} m_t$$

Source of lack of full insurance against idiosyncratic shock

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• May mean that $b_t^L + b_t^U < 0$.

Optimal Choice of Entrepreneurs I

$$R_{m,t+1}^{L}\left[\frac{q_{t}g'(m_{t}) + (1-\delta)p_{t+1} - \theta(1-\delta)\frac{p_{t+1}}{1+r_{t+1}}}{p_{t} - 0.5\theta(1-\delta)\frac{p_{t+1}}{1+r_{t+1}}}\right] +$$

$$R_{m,t+1}^{U}\left[\frac{x + p_{t+1}(1-\delta)}{p_t - 0.5\theta(1-\delta)\frac{p_{t+1}}{1+r_{t+1}}}\right]$$

$$= R_{m,t+1}^{U} \left(\frac{1}{\phi_{t}}\right)$$

= $R_{m,t+1}^{U} (1 + r_{t+1}) + R_{m,t+1}^{L} (1 + r_{t+1})$

Equate marginal return to investment in risky technology, insurance, and safe asset.

where $R_{m,t+1}$ is marginal return to investment in entrepreneurial technology in the second period:

$$R_{m,t+1}^{i} = \frac{q_{t+1}f'(m_{t+1}) + (1-\delta)p_{t+2} - \theta(1-\delta)\frac{p_{t+2}}{1+r_{t+2}}}{p_{t+1} - \theta(1-\delta)\frac{p_{t+2}}{1+r_{t+2}}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $i = \{L, U\}$.

Entrepreneurs' Optimal Reaction to Changes in Expected Credit Conditions PARTIAL EQUILIBRIUM

A decrease in expected ex-post borrowing capacity in period t+1, captured by a decrease in

$$\theta(1-\delta)\frac{p_{t+2}}{1+r_{t+2}}$$

may result in a decrease in risky investment in period t as a share of total investment

$$rac{dm_t}{dp_{t+2}}>0, rac{db_t^U}{dp_{t+2}}>0, rac{ds_t}{dp_{t+2}}\gtrless 0.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Structure of Talk

- 1. Introduction
- 2. A General Investment Model to Fix Ideas
- 3. Partial Equilibrium Analysis of Entrepreneurial Investment
- 4. General Equilibrium and Dynamics: Response to Productivity Shock

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- 5. The Role of Financial Intermediaries
- 6. Conclusion

Entrepreneurial Capital Market

Endogenizing p

- Entrepreneurial capital is durable, depreciates at rate δ .
- Created instantaneously one-for-one using consumption goods
 - Upper bound on price: $p_t \leq 1$.
- In periods of low demand, price will decrease to absorb all existing stock of capital:

$$\sum_{i} \pi_i M_{it}(p_t) = \sum_{i} \pi_i (1 - \delta) M_{it-1}$$
, for $i = Y$, L, U, DL, DU

The Economy

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへぐ

Households

Continuum of risk-averse households, maximizing:

$$E_0\sum_{t=0}^{\infty}\beta^t u(c_t, 1-L_t)$$

$$c_t + q_t[k_{t+1} - (1 - \delta_k)k_t] = w_t L_t + r_t k_t$$

Optimal labor-leisure choice:

$$\frac{u_L(t)}{u_c(t)} = w_t$$

Optimal savings-consumption choice:

$$u_{c}(t) = \beta E_{t} \{ u_{c}(t+1) rac{[q_{t+1}(1-\delta)+r_{t+1}]}{q_{t}} \}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Firms

Firms produce the consumption good using a constant returns to scale production function:

$$Y_t = \theta_t F(K_t, H_t, H_t^e)$$

(K_t = stock of investment goods, H_t = aggregate labor supplied by households, and $H_t^e = H^e$ = labor supplied by entrepreneurial agents).

Perfect competition in the factor markets implies the following factor prices:

$$r_t = \theta_t F_1(t)$$

$$w_t = \theta_t F_2(t)$$

$$w_t^e = \theta_t F_3(t)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recursive Competitive Equilibrium

Definition

The recursive competitive equilibrium is defined by decision rules for K_{t+1} , C_t , H_t , M_{it}^Y , M_{it}^L , M_{it}^U , Z_{it}^L , Z_{it}^U , Z_{it}^{OL} , Z_{it}^{OU} , I_t , S_t , C_t^E , B_{it}^Y , B_{it}^L , B_{it}^U , q_t , p_t , and ϕ_t , as a function of K_t , θ_t , and $\{M_{i,t-1}\}$ and $\{Z_{it-1}\}$.

• Where $\{M_{i,t}\}$ is the distribution of entrepreneurial capital, and $\{Z_{i,t}\}$ is the distribution of end-of-period entrepreneurial net worth.

 Equilibrium solved numerically using the Parameterized Expectations Approach of den Haan and Marcet (1990).

Calibration I

 Model parameterized at the non-stochastic steady state using values to replicate long-run empirical regularities in U.S. post-World War II macro data.

αK	0.36	Capital Share
α ^e	0.01	Entrepreneurial L Share
α	0.63	HH labor Share
δ	0.02	Depreciation
ρ	0.95	in $\log heta_{t+1} = ho \log heta_t + \sigma_arepsilon arepsilon_{t+1}$
σ	0.01	in $\log heta_{t+1} = ho \log heta_t + \sigma_arepsilon arepsilon_{t+1}$
γ	1	in $U = (c^{1-\gamma} - 1)/(1-\gamma) + v(1-L)$
V		Chosen to obtain $L = 0.3$

Calibration II

Entrepreneurial sector parameters

- Pledgeability of entrepreneurial capital (θ)
 - match empirically documented Loan-to-Value (LTV) ratios for commercial mortgage lending to small and medium-sized enterprises
- Remaining parameters relate to the entrepreneurial risky technology, calibrated to match
 - risk premium: average spread between the 3-month CP rate and prime rate: 187 basis points.
 - share of loans issued on commitment basis. Kashyap et al. (2002): 70% of bank lending by U.S. small firms through credit lines.

Steady State Properties

Figure: Composition of entrepreneurial investment and aggregate capital in the steady state, as a function of changes in idiosyncratic volatility.

- Mean-preserving increase in volatility of entrepreneurial activity decreases steady-state share of risky investment, and steady-state capital.
 - Not the case in model with no precautionary effects

Moments

Empirical Data 0.51 2.86 0.92 Model		$\frac{\sigma_c}{\sigma_Y}$	$\frac{\sigma_i}{\sigma_Y}$	$\frac{\sigma_H}{\sigma_Y}$
ModelStandard Credit0.712.970.61Precautionary0.743.050.64	Empirical Data	0.51	2.86	0.92
Standard Credit 0.71 2.97 0.61 Precautionary 0.74 3.05 0.64	Model			
Precautionary 0.74 3.05 0.64	Standard Credit	0.71	2.97	0.61
	Precautionary	0.74	3.05	0.64

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Dynamics - Persistent aggregate shock

 \blacktriangleright Response to a negative 1% productivity shock, persistence $\rho=0.95$

э

Intuition

- Negative shock hits
 - ▶ firms understand shock will be persistent ⇒ probability of being financially constrained next period increases.

- react by decreasing share of risky investment
- Larger contemporaneous response to shocks (more amplification)
- Standard financial accelerator framework, firms invest as much as they can at every point in time.

Dynamics - Low Persistence in aggregate shock

 \blacktriangleright Response to a negative 1% productivity shock, persistence $\rho=0.70$

э

Asymmetry

- Hansen and Prescott (2002) and Sichel (1993)
 - evidence that positive shocks produce smaller positive output effects than negative shocks produce negative output effects.
- Existing theory:
 - Capacity constraint models: Hansen and Prescott (2002), Danziger (2003)

Sticky price models: Devereux and Siu (2003).

Asymmetry

Table: Summary of Numerical Results - Comparison of Outcomes

	Full Model	Full Model	
		Recessions	Upturns
σ (Output) / σ (Tech Shock)	2.13	3.73	1.67
σ (Inv) / σ (Tech Shock)	6.48	8.36	5.71

 Asymmetric amplification mechanism: amplification of negative shocks stronger.

Structure of Talk

- 1. Introduction
- 2. A General Investment Model to Fix Ideas
- 3. Partial Equilibrium Analysis of Entrepreneurial Investment
- 4. General Equilibrium and Dynamics: Response to Productivity Shock

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- 5. The Role of Financial Intermediaries
- 6. Conclusion
Role of Financial Intermediaries

Need to collateralize all their obligations ('insurance' payments to the unlucky entrepreneurs):

$$i_t \leq b_t = \sum_{i=L,U,DL,DU} \left[\pi^i \theta(1-\delta) E_t(\frac{p_{t+1}}{1+r_{t+1}}) m_t^i \right]$$

where $i_t = \int_E b_t^U$ are the 'insurance' commitments of the representative intermediary

 Only assets they can use to collateralize are the loans they extend to entrepreneurs.

Entrepreneurs' Optimal Reaction to Worsening Expected Credit Conditions

• Following a decrease in expected borrowing capacity in t + 1

$$E_t\left[\theta(1-\delta)\frac{p_{t+2}}{1+r_{t+2}}\right]$$

and if frictions in the supply of insurance are severe enough, and ϕ_{τ} increases sufficiently as a result, then

$$m_t \downarrow$$
, $s_t \uparrow$, i_t ?

in contrast to a situation where banks' constraint is not binding, and in which:

$$m_t \downarrow$$
, s_t ?, $i_t \uparrow$.

Dynamics

 Insurance is priced at a premium above actuarially fair price in severe downturns

Cross Country Comparisons

Size of the amplification effect as a function of theta (non-monotonic) and volatility of aggregate shock (monotonic)

Conclusions

- I develop a dynamic stochastic general equilibrium model of entrepreneurial activity and intermediation with endogenous financial constraints
- Describes a novel amplification mechanism of macro shocks based on firms' precautionary behavior in anticipation of future credit constraints.
- Is able to account for observed pattern of *composition of investment* across the business cycle

Conclusions and Further Research

- Can this mechanism capture the most significant effect of credit frictions in investment and output dynamics?
- Analysis of monetary policy shocks
- Capital structure implications of precautionary behavior
- Asset pricing implications: 'Liquidity Asset Pricing Model' (Holmstrom and Tirole (2001))
- Study precautionary behavior in other agents: eg. financial intermediaries in current episode of turbulence

Appendix Material

<□ > < @ > < E > < E > E のQ @

Working Capital Investment

- Inventories small share of GDP, large share of GDP fluctuations (Blinder and Maccini (1991), Stock and Watson (1998))
- Inventories are more volatile than sales (Carpenter, Fazzari and Petersen (1993))
- Gertler and Gilchrist (94): following MP tightening:
 - Inventories (absolute) fall MORE for smaller firms
 - Inventory /sales ratio falls MORE in small firms
- Inventory investment considerably more cyclical for durables than for nondurables

Average Inventory Holdings

USD million	Small Firms	Large Firms
Inventories	23.7	279.5
Total Assets	98.1	1491.9
(I/TA)	24.2%	18.7%
Total Sales	36.8	488.7
(I/TS)	64.4%	57.2%

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Carpenter, Fazzari and Petersen (1993)

Cash Holdings and Firm Size

▲口▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

Accuracy

Den Haan and Marcet (1994) test

- Forecast errors of agents in RE models should be uncorrelated with past information.
- Regress forecast errors of three approximated expectational equations on lagged values of model variables.
- DM Statistic: Under the null that numerical solution is exact, the DM statistic has χ^2 distribution.
 - Statistic < 2.5% and > 97.5% critical values in less than 5% of occasions.