Optimal Monetary Policy in a Data-Rich Environment

Jean Boivin Marc Giannoni
HEC Montreal Columbia University

DSGE Models in the Policy Environment
Banca d'Italia

June 24, 2008
Monetary Policy in Practice vs. DSGE Models

- Monetary policy in practice: Complex because uncertainty about
Monetary Policy in Practice vs. DSGE Models

- Monetary policy in practice: Complex because uncertainty about
 - Model
Monetary Policy in Practice vs. DSGE Models

- Monetary policy in practice: Complex because uncertainty about
 - Model
 - State of economy
Monetary Policy in Practice vs. DSGE Models

- Monetary policy in practice: Complex because uncertainty about
 - Model
 - State of economy
- Most DSGE studies assume model known, state of economy perfectly observed
Monetary Policy in Practice vs. DSGE Models

- Monetary policy in practice: Complex because uncertainty about
 - Model
 - State of economy
- Most DSGE studies assume model known, state of economy perfectly observed
 - May exaggerate ability of CB to conduct stabilization policies
Monetary Policy in Practice vs. DSGE Models

- Monetary policy in practice: Complex because uncertainty about
 - Model
 - State of economy

- Most DSGE studies assume model known, state of economy perfectly observed
 - May exaggerate ability of CB to conduct stabilization policies
 - May distort welfare evaluations of alternative policies
This paper

- Model known
This paper

- Model known
- But state of economy imperfectly observed
This paper

- Model known
- But state of economy imperfectly observed
- Consider data-rich environment
This paper

- Model known
- But state of economy imperfectly observed
- Consider data-rich environment
 - Why?
Empirical evidence: large data sets relevant

- for forecasting
 - Stock, Watson (1999, 2002); Forni, Hallin, Lippi, Reichlin (2000)...

- to assess state of economy: e.g.
Empirical evidence: large data sets relevant

- for forecasting
 - Stock, Watson (1999, 2002); Forni, Hallin, Lippi, Reichlin (2000)...

- to assess state of economy: e.g.
 - within quarter: Giannone, Monti, Reichlin (2008)
Empirical evidence: large data sets relevant

- for forecasting
 - Stock, Watson (1999, 2002); Forni, Hallin, Lippi, Reichlin (2000)...

- to assess state of economy: e.g.
 - within quarter: Giannone, Monti, Reichlin (2008)
State of economy imperfectly observed
What is employment? What is inflation? (BG 2006)

- Employment: household surveys ≠ payroll surveys
- Inflation: GDP deflator, PCE deflator, CPI: low coherence at high frequency
Why monetary policy in a data-rich environment?

- BG (06): Estimation of DSGE model with large data set yields:
 - More precise estimation of the state of the economy
 - Improvements in “forecasting” with additional information
 - Different conclusions about sources of business cycles

- Use of large data set should be desirable for conduct of monetary policy
Why monetary policy in a data-rich environment?

- BG (06): Estimation of DSGE model with large data set yields:
 - More precise estimation of the state of the economy
 - Improvements in “forecasting” with additional information
 - Different conclusions about sources of business cycles

- Use of large data set should be desirable for conduct of monetary policy
 - wrong assessment of state \rightarrow wrong stance of monetary policy
Why monetary policy in a data-rich environment?

- BG (06): Estimation of DSGE model with large data set yields:
 - More precise estimation of the state of the economy
 - Improvements in “forecasting” with additional information
 - Different conclusions about sources of business cycles

- Use of large data set should be desirable for conduct of monetary policy
 - wrong assessment of state \implies wrong stance of monetary policy

- What are welfare benefits of exploiting information from large data sets?
Paper’s contributions

- Evaluate welfare benefits associated with exploiting information from large data sets for conduct of policy
Paper’s contributions

- Evaluate welfare benefits associated with exploiting information from large data sets for conduct of policy
 - Finding: welfare gains may be large!
Paper’s contributions

- Evaluate welfare benefits associated with exploiting information from large data sets for conduct of policy
 - Finding: welfare gains may be large!
- Characterize equilibrium for optimal or arbitrary policies, given various information sets, in simple state-space form
Outline

1. Monetary policy under imperfect information
2. Econometrician’s problem: Estimate states and parameters
3. Welfare implications of imperfect information in a simple quantitative model
4. Conclusion
Monetary policy under imperfect information

- Assumptions:
Monetary policy under imperfect information

- Assumptions:
 - model is true
Monetary policy under imperfect information

- Assumptions:
 - model is true
 - agents know model, param. and state of economy (i.e., realized shocks)
Assumptions:

- model is true
- agents know model, param. and state of economy (i.e., realized shocks)
- CB knows model but not state: observes indicators
Monetary policy under imperfect information

- **Assumptions:**
 - model is true
 - agents know model, param. and state of economy (i.e., realized shocks)
 - CB knows model but not state: observes indicators

Monetary policy under imperfect information

- Assumptions:
 - model is true
 - agents know model, param. and state of economy (i.e., realized shocks)
 - CB knows model but not state: observes indicators

 - Here extended to data-rich envt.:
 - more accurate assessment of state by CB
 - should improve performance of policy, hence welfare
Monetary policy under imperfect information

- Assumptions:
 - model is true
 - agents know model, param. and state of economy (i.e., realized shocks)
 - CB knows model but not state: observes indicators

 - Here extended to data-rich envt.:
 - more accurate assessment of state by CB
 - should improve performance of policy, hence welfare
 - Consider also arbitrary policy rules
Monetary policy under imperfect information

- Assumptions:
 - model is true
 - agents know model, param. and state of economy (i.e., realized shocks)
 - CB knows model but not state: observes indicators

 - Here extended to data-rich envt.:
 - more accurate assessment of state by CB
 - should improve performance of policy, hence welfare
 - Consider also arbitrary policy rules

General framework

Model (Private sector):

\[
\begin{bmatrix}
Z_{t+1} \\
\tilde{E}E_t z_{t+1}
\end{bmatrix} = A \begin{bmatrix} Z_t \\ z_t \end{bmatrix} + Bi_t + \begin{bmatrix} u_{t+1} \\ 0 \end{bmatrix}
\]

Assumption: private sector knows \{Z_s, z_s, i_s, u_s, s \leq t\}
General framework

- Model (Private sector):

\[
\begin{bmatrix}
Z_{t+1} \\
\tilde{E}E_{t}z_{t+1}
\end{bmatrix} = A \begin{bmatrix}
Z_{t} \\
z_{t}
\end{bmatrix} + Bi_{t} + \begin{bmatrix}
u_{t+1} \\
0
\end{bmatrix}
\]

Assumption: private sector knows \(\{Z_{s}, z_{s}, i_{s}, u_{s}, s \leq t\}\)

- CB sets instrument: \(i_{t}\), observing \(X_{s}^{cb}, i_{s}\), but not \(Z_{s}, z_{s}, u_{s}, s \leq t\)

\[
X_{t}^{cb} = \Lambda \begin{bmatrix}
Z_{t} \\
z_{t}
\end{bmatrix} + \nu_{t}
\]
Three cases
Central bank commits to simple rule

- Case #1: Responds naively to observed indicators:

\[i_t = \phi X_t^{cb} = \phi \Lambda \left[\begin{array}{c} Z_t \\ z_t \end{array} \right] + (\phi v_t) \]
Three cases
Central bank commits to simple rule

- **Case #1**: Responds naively to observed indicators:
 \[
i_t = \phi X_{tcb} = \phi \Lambda \begin{bmatrix} Z_t \\ z_t \end{bmatrix} + (\phi v_t)
 \]

- **Case #2**: Optimally filters information from observable indicators
 \[
i_t = \phi \begin{bmatrix} Z_t|t \\ z_t|t \end{bmatrix}
 \]

\[
Z_t|t \equiv E \left[Z_t | I_{tcb} \right]
\]
General framework
Central bank commits to optimal policy (Svensson Woodford, 2004)

- Case #3: CB minimizes loss

$$\mathcal{L}_0 = E_0 \left\{ \sum_{t=0}^{\infty} \beta^t (\tau_t - \tau_t^*)' W (\tau_t - \tau_t^*) \mid l_t^{cb} \right\}$$

given:
General framework
Central bank commits to optimal policy (Svensson Woodford, 2004)

- Case #3: CB minimizes loss

\[\mathcal{L}_0 = E_0 \left\{ \sum_{t=0}^{\infty} \beta^t (\tau_t - \tau_t^*)' W (\tau_t - \tau_t^*) \mid I_t^{cb} \right\} \]

given:
- behavior of private sector
General framework
Central bank commits to optimal policy (Svensson Woodford, 2004)

- Case #3: CB minimizes loss

\[\mathcal{L}_0 = E_0 \left\{ \sum_{t=0}^{\infty} \beta^t (\tau_t - \tau_t^*)' W (\tau_t - \tau_t^*) \mid I_t^{cb} \right\} \]

given:
- behavior of private sector
- CB observed indicators \(X_s^{cb} \)
Complications due to asymmetry in information of private sector and CB:

- certainty equivalence (pol. same as if eco fully observable): \implies modified (applies only to specific representation of policy)
- separation principle (opt. pol vs signal-extraction): \implies does not apply
- intuition: equilibrium depends of expected future variables (i.e., on how expected future policy will respond to signals)
Equilibrium characterization

- Solution in state space:

\[
\begin{bmatrix}
i_t \\
\bar{z}_t
\end{bmatrix} = DS_t \\
S_t = GS_{t-1} + H\varepsilon_t
\]

- Same form, whether:
 - policy is optimal or arbitrary rule
 - information is full or incomplete

- Dynamics entirely determined by state variables \(S_t \)
Equilibrium characterization: Examples

- Optimal policy (commitment), full information:

\[
\begin{bmatrix}
 i_t \\
 z_t
\end{bmatrix} = \begin{bmatrix}
 \bar{D}_1 \\
 \bar{D}_2
\end{bmatrix} \bar{Z}_t
\]

\[
\bar{Z}_t = \bar{G}_1 \bar{Z}_{t-1} + \bar{u}_t
\]

where

\[
S_t = \bar{Z}_t \equiv \begin{bmatrix}
 Z'_t, \\
 \Xi'_t_{t-1}
\end{bmatrix}'
\]
Equilibrium characterization: Examples

- Optimal policy (commitment), full information:

\[
\begin{bmatrix}
i_t \\ z_t
\end{bmatrix} = \begin{bmatrix}
\bar{D}_1 \\ \bar{D}_2
\end{bmatrix} \bar{Z}_t
\]

\[
\bar{Z}_t = \bar{G}_1 \bar{Z}_{t-1} + \bar{u}_t
\]

where

\[
S_t = \bar{Z}_t \equiv [Z'_t, \Xi'_{t-1}]'
\]

- Optimal policy (commitment), imperfect information:

\[
\begin{bmatrix}
i_t \\ z_t
\end{bmatrix} = \begin{bmatrix}
0 & \bar{D}_1 \\ \bar{D}_2 & (\bar{D}_2 - \bar{D}_2^\top)
\end{bmatrix} \begin{bmatrix}
\bar{Z}_t
\end{bmatrix}
\]

\[
\begin{bmatrix}
\bar{Z}_{t+1} \\ \bar{Z}_{t+1|t+1}
\end{bmatrix} = \begin{bmatrix}
\bar{G}_1^\top & (\bar{G}_1 - \bar{G}_1^\top) \\ \bar{K} \bar{L} \bar{G}_1^\top & (\bar{G}_1 - \bar{K} \bar{L} \bar{G}_1^\top)
\end{bmatrix} \begin{bmatrix}
\bar{Z}_t \\ \bar{Z}_{t|t}
\end{bmatrix} + H \begin{bmatrix}
\bar{u}_{t+1} \\ \nu_{t+1}
\end{bmatrix}
\]

Note: $\bar{D}_1, \bar{D}_2, \bar{G}_1$ independent of CB information set
Econometrician: Estimation of states and parameters
Linking theory and data: Known link

\[X_{F,t} = \Lambda_F F_t + e_{F,t} = \Lambda_F \Phi S_t + e_{F,t} \]

where \(F_t = \Phi S_t \): variables of interest

- Concepts with multiple indicators:
 - e.g., Prices: GDP deflator, PCE deflator, CPI,
Econometrician: Estimation of states and parameters
Linking theory and data: Known link

\[X_{F,t} = \Lambda_F F_t + e_{F,t} = \Lambda_F \Phi S_t + e_{F,t} \]

where \(F_t = \Phi S_t \): variables of interest

- Concepts with multiple indicators:
 - e.g., Prices: GDP deflator, PCE deflator, CPI,

- Special cases:
Econometrician: Estimation of states and parameters
Linking theory and data: Known link

\[X_{F,t} = \Lambda_F F_t + e_{F,t} = \Lambda_F \Phi S_t + e_{F,t} \]

where \(F_t = \Phi S_t \): variables of interest

- Concepts with multiple indicators:
 - e.g., Prices: GDP deflator, PCE deflator, CPI,

- Special cases:
 - No measurement error: \(X_{F,t} = F_t = \Phi S_t \)
Econometrician: Estimation of states and parameters

Linking theory and data: Known link

\[X_{F,t} = \Lambda_F F_t + e_{F,t} = \Lambda_F \Phi S_t + e_{F,t} \]

where \(F_t = \Phi S_t \): variables of interest

- Concepts with multiple indicators:
 - e.g., Prices: GDP deflator, PCE deflator, CPI,

- Special cases:
 - No measurement error: \(X_{F,t} = F_t = \Phi S_t \)
 - Sargent (1989): \(X_{F,t} = F_t + e_{F,t} = \Phi S_t + e_{F,t} \)
 Maintain single indicator for each concept
Econometrician: Estimation of states and parameters
Linking theory and data: Unknown link

\[X_{S,t} = \Lambda_S S_t + e_{S,t} \]

where \(\Lambda_S \) is completely unrestricted (e.g. commodity prices)

- \(X_{S,t} \) helps estimate the state vector \(S_t \)
- Partially observed state variables / exogenous shocks
 - E.g. productivity shock: oil or commodity prices may provide information
- More flexible exploitation of information
Empirical model: Summary

- Transition equation:

\[S_t = GS_{t-1} + H\epsilon_t \]

- Observation equation:

\[X_t = \Lambda S_t + e_t \]

\[X_t \equiv \begin{bmatrix} X_{F,t} \\ X_{S,t} \end{bmatrix}, \quad e_t \equiv \begin{bmatrix} e_{F,t} \\ e_{S,t} \end{bmatrix}, \quad \Lambda \equiv \begin{bmatrix} \Lambda_F \Phi \\ \Lambda_S \end{bmatrix}. \]

- Comments:
 - Related to non-structural factor models, but we impose DSGE model on transition equation of latent factors
 - Factors have economic interpretation: state variables
 - Interpret info. in data set through lenses of DSGE model
 - Can do counterfactual experiments, study optimal policy
Advantages of large information set

Proposition 1: Suppose that the true model implies a transition equation of the form

\[S_t = GS_{t-1} + H\varepsilon_t \]

and that the data \((X_t)\) relates to \(S_t\) according to

\[X_t = \Lambda S_t + e_t. \]

Then, under *suitable conditions* there exist estimates of \(S_t\) that have the property:

1. \(\lim_{n\to\infty} \hat{S}_t = S_t\)
2. \(\lim_{n\to\infty} \text{var}(\hat{S}_t) = 0\)

Advantages of large information set
Implications of proposition 1

Proposition 2: If CB conducts optimal policy under imperfect info. and estimates economy’s states using an infinite data set \((n_X \to +\infty)\), equilibrium is fully characterized by the state space characterizing the optimal equilibrium under full information

\[
\begin{bmatrix}
 i_t \\
 z_t
\end{bmatrix} = \begin{bmatrix}
 \bar{D}_1 \\
 \bar{D}_2
\end{bmatrix} \bar{Z}_t
\]

\[
\bar{Z}_{t+1} = \bar{G}_1 \bar{Z}_t + \bar{u}_{t+1},
\]

where \(\bar{D}_1, \bar{D}_2, \bar{G}_1\) depend on model in absence of uncertainty and \(\bar{\Sigma}_u\) depends only on the structural shocks, even if \(\Sigma_v \neq 0\). In addition

\[
z_{t|t} = z_t, \quad \text{and} \quad \bar{Z}_{t|t} = \bar{Z}_t.
\]
Welfare implications in a simple quantitative model

Model (Giannoni Woodford, 2004)

- Private sector: NK model with habit, price and wage rigidities, inflation indexing (but no decision delays)
Welfare implications in a simple quantitative model

Model (Giannoni Woodford, 2004)

- **Private sector**: NK model with habit, price and wage rigidities, inflation indexing (but no decision delays)
- **IS block**

\[
\tilde{x}_t = E_t \tilde{x}_{t+1} - \varphi^{-1} (\hat{i}_t - E_t \pi_{t+1} - r^n_t)
\]

\[
\tilde{x}_t = (x_t - \eta x_{t-1}) - \beta \eta (E_t x_{t+1} - \eta x_t)
\]

\[
x_t = y_t - y^n_t
\]
Welfare implications in a simple quantitative model

Model (Giannoni Woodford, 2004)

- Private sector: NK model with habit, price and wage rigidities, inflation indexing (but no decision delays)

- IS block

\[
\tilde{x}_t = E_t \tilde{x}_{t+1} - \varphi^{-1} (\hat{i}_t - E_t \pi_{t+1} - r^n_t)
\]

\[
\tilde{x}_t \equiv (x_t - \eta x_{t-1}) - \beta \eta (E_t x_{t+1} - \eta x_t)
\]

\[
x_t = y_t - y^n_t
\]

- AS block

\[
\pi^w_t - \gamma_w \pi_{t-1} = \xi_w (\omega_w x_t + \varphi \tilde{x}_t) + \xi_w (\omega^n_t - \omega_t)
\]

\[
+ \beta (E_t \pi^w_{t+1} - \gamma_w \pi_t)
\]

\[
\pi_t - \gamma_p \pi_{t-1} = \xi_p \omega_p x_t + \xi_p (\omega_t - \omega^n_t) + \beta (E_t \pi_{t+1} - \gamma_p \pi_t)
\]

\[
\pi^w_t = \pi_t + \omega_t - \omega_{t-1}
\]

\[y^n_t, r^n_t, \omega^n_t: \text{functions of underlying shocks (TFP, gov. exp., labor supply)}\]
Welfare implications in a simple quantitative model

Monetary policy

- Historical monetary policy

\[\hat{i}_t = \phi_{i1}\hat{i}_{t-1} + \phi_{i2}\hat{i}_{t-2} + (1 - \phi_{i1} - \phi_{i2}) \left(\phi_\pi \pi_t^* + \phi_y y_t^* / 4 \right) + \epsilon_t \]

where \(\pi_t^*, y_t^* \) = indicators observable by CB

\[\pi_t^* = \pi_t + e_t^\pi \]

\[y_t^* = y_t + e_t^y \]
Estimation of states

- Observation equation

\[
X_{Ft} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & \lambda_2 \\
0 & 0 & 0 & \lambda_3 \\
0 & 0 & 0 & \lambda_4 \\
\end{bmatrix}
\begin{bmatrix}
i_t \\
y_t \\
o_t \\
\pi_t \\
\end{bmatrix} +
\begin{bmatrix}
0 \\
e_t^v \\
e_t^w \\
e_t^{\pi 1} \\
e_t^{\pi 2} \\
e_t^{\pi 3} \\
e_t^{\pi 4} \\
\end{bmatrix}
\]

\[
X_{St} = \Lambda S_t + e_{St}
\]

where \(X_{St} = 35 \) PC of 91 US main macro time series

- Use MCMC techniques
“Estimation” of structural parameters: A short-cut

- In principle could estimate jointly states and parameters using MCMC algorithm (Boivin-Giannoni, 2006)
- Here: focus on the role of additional information for unobserved state
- Hence, “calibrate” structural parameters (at value obtained from standard Bayesian estimation)
"Estimation" of structural parameters: A short-cut

<table>
<thead>
<tr>
<th>Structural parameters</th>
<th>"Calibrated" parameters</th>
<th>Persistence of shocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta)</td>
<td>0.9900</td>
<td>(\phi_{i1})</td>
</tr>
<tr>
<td>(\varphi)</td>
<td>3.7719</td>
<td>(\phi_{i2})</td>
</tr>
<tr>
<td>(\eta)</td>
<td>0.7759</td>
<td>(\phi_\pi)</td>
</tr>
<tr>
<td>(\gamma_p)</td>
<td>0.1506</td>
<td>(\phi_y / 4)</td>
</tr>
<tr>
<td>(\gamma_\omega)</td>
<td>0.6661</td>
<td></td>
</tr>
<tr>
<td>(\xi_p)</td>
<td>0.0543</td>
<td></td>
</tr>
<tr>
<td>(\xi_\omega)</td>
<td>0.1923</td>
<td></td>
</tr>
<tr>
<td>(\omega_p)</td>
<td>0.6046</td>
<td></td>
</tr>
<tr>
<td>(\omega_w)</td>
<td>0.6718</td>
<td></td>
</tr>
</tbody>
</table>
Welfare loss function

- CB’s welfare-relevant objective function

\[L_0 = E_0 \left\{ (1 - \beta) \sum_{t=0}^{\infty} \beta^t \left[\lambda_p (\pi_t - \gamma_p \pi_{t-1})^2
+ \lambda_w (\pi^w_t - \gamma_w \pi_{t-1})^2 + \lambda_x (x_t - \delta x_{t-1})^2 + \lambda_i i_t^2 \right] \right\} | l_{0cb} \]

- Coefficients:

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_p)</td>
<td>0.596</td>
</tr>
<tr>
<td>(\lambda_w)</td>
<td>0.404</td>
</tr>
<tr>
<td>(16\lambda_x)</td>
<td>0.800</td>
</tr>
<tr>
<td>(\lambda_i)</td>
<td>0.077</td>
</tr>
<tr>
<td>(\delta)</td>
<td>0.501</td>
</tr>
</tbody>
</table>
Welfare comparisons
Historical policy with alternative information sets

1. CB responds naively to observed indicators π_t^*, y_t^*

$$
\hat{t}_t = \phi_{i1}\hat{t}_{t-1} + \phi_{i2}\hat{t}_{t-2} + (1 - \phi_{i1} - \phi_{i2}) \left(\phi_{\pi}\pi_t^* + \phi_y y_t^* / 4 \right)
$$

not realizing that π_t^*, y_t^* are imperfect indicators of π_t, y_t

2. CB observes, $\pi_s^*, y_s^*, \hat{s}, s \leq t$, knows variance and persistence of measurement error, and optimally filters out noise

$$
\hat{t}_t = \phi_{i1}\hat{t}_{t-1} + \phi_{i2}\hat{t}_{t-2} + (1 - \phi_{i1} - \phi_{i2}) \left(\phi_{\pi}\pi_t |_t + \phi_y y_t |_t / 4 \right)
$$

3. CB observe infinite number of data series = full info

$$
\hat{t}_t = \phi_{i1}\hat{t}_{t-1} + \phi_{i2}\hat{t}_{t-2} + (1 - \phi_{i1} - \phi_{i2}) \left(\phi_{\pi}\pi_t + \phi_y y_t / 4 \right)
$$
Welfare comparisons

Historical policy with alternative information sets

<table>
<thead>
<tr>
<th>Case</th>
<th>$E[L_0]$</th>
<th>$V[\pi - \gamma_p \pi_{-1}]$</th>
<th>$V[\pi^w - \gamma^w_\pi \pi_{-1}]$</th>
<th>$V[x - \delta x_{-1}]$</th>
<th>$V[i]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>naive</td>
<td>7.70</td>
<td>8.21</td>
<td>4.21</td>
<td>0.85</td>
<td>5.48</td>
</tr>
<tr>
<td>simple filt.</td>
<td>2.74</td>
<td>2.40</td>
<td>1.54</td>
<td>0.71</td>
<td>1.63</td>
</tr>
<tr>
<td>full info.</td>
<td>2.05</td>
<td>1.85</td>
<td>0.95</td>
<td>0.53</td>
<td>1.73</td>
</tr>
<tr>
<td>Case 2/Case 3</td>
<td>1.34</td>
<td>1.30</td>
<td>1.62</td>
<td>1.32</td>
<td>0.94</td>
</tr>
</tbody>
</table>

Loss: 34% higher for CB doing simple filtering

Note: with simple filtering, CB knows everything except for iid component of measurement error shock!
Welfare comparisons
Optimal policy with alternative information sets

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>simple filt.</td>
<td>0.98</td>
<td>0.61</td>
<td>0.85</td>
<td>0.21</td>
<td>1.28</td>
</tr>
<tr>
<td>full info.</td>
<td>0.94</td>
<td>0.58</td>
<td>0.75</td>
<td>0.22</td>
<td>1.45</td>
</tr>
<tr>
<td>Case 2/Case 3</td>
<td>1.04</td>
<td>1.04</td>
<td>1.13</td>
<td>0.98</td>
<td>0.88</td>
</tr>
</tbody>
</table>

- Optimal policy: smaller welfare gains of large info set
- Optimal policy more robust to imperfect info about state of economy
- Reasons to believe this underestimates welfare costs of imperfect info
Welfare comparisons
Optimal policy with alternative information sets

<table>
<thead>
<tr>
<th>Case</th>
<th>E[L_0]</th>
<th>V[π−γ_p π_{t−1}]</th>
<th>V[π^w−γ_w π_{t−1}]</th>
<th>V[x−δ x_{t−1}]</th>
<th>V[i]</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple filt.</td>
<td>0.98</td>
<td>0.61</td>
<td>0.85</td>
<td>0.21</td>
<td>1.28</td>
</tr>
<tr>
<td>full info.</td>
<td>0.94</td>
<td>0.58</td>
<td>0.75</td>
<td>0.22</td>
<td>1.45</td>
</tr>
<tr>
<td>Case 2/Case 3</td>
<td>1.04</td>
<td>1.04</td>
<td>1.13</td>
<td>0.98</td>
<td>0.88</td>
</tr>
</tbody>
</table>

- Optimal policy: smaller welfare gains of large info set
 - Optimal policy more robust to imperfect info about state of economy

- Reasons to believe this underestimates welfare costs of imperfect info
 - Actual policy closer to "historical" than opt. policy
Welfare comparisons

Optimal policy with alternative information sets

<table>
<thead>
<tr>
<th>Case</th>
<th>$E[\mathcal{L}_0]$</th>
<th>$V[\pi - \gamma_p \pi_{-1}]$</th>
<th>$V[\pi^w - \gamma_w \pi_{-1}]$</th>
<th>$V[x - \delta x_{-1}]$</th>
<th>$V[i]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple filt.</td>
<td>0.98</td>
<td>0.61</td>
<td>0.85</td>
<td>0.21</td>
<td>1.28</td>
</tr>
<tr>
<td>full info.</td>
<td>0.94</td>
<td>0.58</td>
<td>0.75</td>
<td>0.22</td>
<td>1.45</td>
</tr>
<tr>
<td>Case 2/Case 3</td>
<td>1.04</td>
<td>1.04</td>
<td>1.13</td>
<td>0.98</td>
<td>0.88</td>
</tr>
</tbody>
</table>

- **Optimal policy**: smaller welfare gains of large info set
 - Optimal policy more robust to imperfect info about state of economy

- **Reasons to believe this underestimates welfare costs of imperfect info**
 - Actual policy closer to "historical" than opt. policy
 - Here: easy to recover state given noisy data on π_t, y_t (most fluctuations from TFP shock)
Welfare comparisons
Optimal policy with alternative information sets

<table>
<thead>
<tr>
<th>Case</th>
<th>$E[L_0]$</th>
<th>$V[\pi - \gamma_p \pi_{-1}]$</th>
<th>$V[\pi^w - \gamma_w \pi_{-1}]$</th>
<th>$V[x - \delta x_{-1}]$</th>
<th>$V[i]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple filt.</td>
<td>0.98</td>
<td>0.61</td>
<td>0.85</td>
<td>0.21</td>
<td>1.28</td>
</tr>
<tr>
<td>full info.</td>
<td>0.94</td>
<td>0.58</td>
<td>0.75</td>
<td>0.22</td>
<td>1.45</td>
</tr>
<tr>
<td>Case 2/Case 3</td>
<td>1.04</td>
<td>1.04</td>
<td>1.13</td>
<td>0.98</td>
<td>0.88</td>
</tr>
</tbody>
</table>

- Optimal policy: smaller welfare gains of large info set
 - Optimal policy more robust to imperfect info about state of economy

- Reasons to believe this underestimates welfare costs of imperfect info
 - Actual policy closer to "historical" than opt. policy
 - Here: easy to recover state given noisy data on π_t, y_t (most fluctuations from TFP shock)
 - Adding trade-offs (markup shocks...) yields larger welfare effects
Propose a general framework that exploits information from data-rich environment for:

- estimation of DSGE models
- optimal policy

Imperfect measurement provides scope for using additional indicators

Characteze equilibrium for optimal or arbitrary policies, given various information sets, in simple state-space form

Attempt to automatize exercise informally done in CBs

Finding: Properly exploiting all available information yields potentially large welfare benefits
Next steps planned

- Characterize optimal policy, optimal path of i_t, π_t, y_t... given available info
- Available indicators give mixed signals
 \implies How to treat multiple signals? What weights?
Welfare comparisons

Alternative policies and information sets

<table>
<thead>
<tr>
<th>Case</th>
<th>(V[\pi])</th>
<th>(V[\pi^w])</th>
<th>(V[y])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historical policy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 naive</td>
<td>10.81</td>
<td>11.74</td>
<td>4.86</td>
</tr>
<tr>
<td>2 simple filt.</td>
<td>2.95</td>
<td>2.64</td>
<td>3.59</td>
</tr>
<tr>
<td>3 full info.</td>
<td>2.26</td>
<td>1.60</td>
<td>3.86</td>
</tr>
<tr>
<td>Case 2/Case 3</td>
<td>1.31</td>
<td>1.65</td>
<td>0.93</td>
</tr>
<tr>
<td>Optimal policy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 simple filt.</td>
<td>0.71</td>
<td>0.49</td>
<td>6.29</td>
</tr>
<tr>
<td>5 full info.</td>
<td>0.68</td>
<td>0.32</td>
<td>6.32</td>
</tr>
<tr>
<td>Case 4/Case 5</td>
<td>1.05</td>
<td>1.54</td>
<td>0.99</td>
</tr>
</tbody>
</table>
“Estimation” of structural parameters: A short-cut

<table>
<thead>
<tr>
<th>St. dev. of shocks estimated with large data set</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_a)</td>
<td>1.4995</td>
</tr>
<tr>
<td>(\sigma_g)</td>
<td>0.0227</td>
</tr>
<tr>
<td>(\sigma_h)</td>
<td>0.9768</td>
</tr>
<tr>
<td>(\sigma_{\varepsilon i})</td>
<td>0.2589</td>
</tr>
<tr>
<td>(\sigma_{e\pi})</td>
<td>0.1880</td>
</tr>
<tr>
<td>(\sigma_{ey})</td>
<td>0.0222</td>
</tr>
</tbody>
</table>