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Abstract

How do �nancial frictions a¤ect the response of an economy to aggregate shocks? In
this paper, we address this question, focusing on liquidity constraints and uninsurable
idiosyncratic risk. We consider a search model where agents use a liquid asset to smooth
individual income shocks. We show that the response of this economy to aggregate shocks
depends on the rate of return on liquid assets. When liquid assets pay a low return, agents
hold smaller liquidity reserves and the response of the economy tends to be larger. In
this case, agents expect to be liquidity constrained and, due to a precautionary motive,
their consumption decisions respond more to changes in expected income. On top of this,
there is a general equilibrium e¤ect that magni�es the economy response. After a positive
aggregate shock, agents�consumption increases and this raises income expectations, further
reducing the precautionary demand for liquid assets.
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1 Introduction

During times of �nancial instability the demand for liquid assets typically increases. Facing

increasing uncertainty, agents tend to shift to cash, government bonds, gold or other safe assets.

In recent emerging market crises this phenomenon has been described as ��ight to quality.�

In this paper, we explore a feed-back mechanism, based on the demand for liquidity, that may

explain why small changes in fundamentals can have large e¤ects on real activity. As agents

are more uncertain about their future income, they self-insure by building up precautionary

reserves and reducing their spending. This reduces the demand for goods and leads to an

output contraction. The perceived level of aggregate risk increases further, pushing agents

even more towards liquid assets. Therefore, the initial �ight to liquidity is ampli�ed through

the endogenous response of agents�spending and output.

While this intuition goes back to the idea of the �multiplier,� of Hume and Keynes, in

this paper we explore it from a di¤erent point of view. We leave aside sticky prices and other

sources of nominal rigidity, and we focus instead on a �exible price model with a limited supply

of liquid assets. In our model the demand for liquidity is fully microfunded and related to risk

aversion and individual income uncertainty.

Within this approach, we address the following question: how does the supply of liquidity in

the economy a¤ects the response of output to aggregate shocks? We consider an economy where

liquid assets are supplied by the government and a low supply of liquidity simply corresponds

to a low rate of return on these assets. Our main result is that a low liquidity supply tends

to magnify the response of output to aggregate shocks. When liquid assets pay a low rate

of return, liquidity is costly and agents hold small precautionary reserves. It follows that the

volatility of their income in the short run has a bigger impact on their spending decisions.

We consider a model of decentralized exchange in the tradition of search models with

money. Agents are anonymous and, thus, credit arrangements are not feasible. Transactions

are �nanced using a government-supplied asset, which we call money. There is a large number

of households composed of a consumer and a producer. We introduce individual income un-

certainty assuming that the producer is exposed to an idiosyncratic productivity shock. The

consumer has to make his consumption decision before knowing the realization of this shock.

Therefore, consumption is determined both by his endowment of real money and by his income

expectations. In this environment we look at the e¤ect of an aggregate shock to productivity
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on aggregate output.

On the �nancial side, we assume that the government pays each period a �xed rate of return

on money balances and uses taxation to keep the stock of money constant. In this context, there

is an increasing mapping between the real rate of return on money and the level of real taxation.

We describe a monetary regime directly in terms of the choice of the rate of return and we

focus on two monetary regimes. First, we look at the case where the rate of return reaches its

maximum feasible level, equal to the inverse of the agents�discount rate. This is a �Friedman

rule� type of regime and in this case the economy achieves the �rst-best allocation. Second,

we look at the case where the rate of return is so low that agents are liquidity constrained for

any realization of the productivity shock. We will refer to the �rst case as an �unconstrained

economy�and to the second one as a �constrained economy.�Then, we compare the e¤ect of

an aggregate shock in the constrained and in the unconstrained economies. We show that, in

the �rst case, there is an ampli�cation e¤ect, capturing the precautionary motive discussed

above. This e¤ect is further reinforced by a general equilibrium mechanism that generates a

feed-back between consumption decisions and income expectations. These e¤ects are absent

in the unconstrained economy.

The approach in this paper is closely related to the large literature on money in models

with search, going back to Diamond (1984) and Kiyotaki and Wright (1989). The search

model in Diamond (1981) has a built-in ampli�cation mechanism, due to the assumption of

increasing returns in the matching function. Our model shares his focus on coordination

motives in decentralized trading, but we look at a di¤erent mechanism, which works through

risk aversion and the precautionary behavior of agents. From a methodological point of view,

our model uses quasi-linear preferences as in Lagos and Wright (2005) to simplify the analysis

of the cross-sectional distribution of money balances.

The paper is also related to the literature on the public supply of liquid assets, including

Woodford (1990) and Holmstrom and Tirole (1998). In this paper we share their view of

government-supplied liquid assets as a necessary ingredient to �nance private transactions.

However, our argument can also be made in an environment where liquid assets are supplied by

the private sector, as long as their supply is limited due to some �nancial market imperfection.

Finally, the paper is related to the large literature exploring the relation between �nancial

frictions and aggregate volatility, including Bernanke and Gertler (1989), Acemoglu and Zili-

botti (1997), Greenwood and Jovanovic (1990), Bencivenga and Smith (1991), Kiyotaki and
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Moore (1997). To the best of our knowledge, this is the �rst paper to address this issue from

the point of view of limited liquidity supply.

The rest of the paper is organized as follows. In Section 2 we introduce our environment

and solve for the �rst-best allocation of resources. In Section 3 we de�ne and characterize the

competitive equilibrium. In particular, we analyze separately the unconstrained economy and

the constrained one. Section 4 addresses the main question of the paper, that is, how the two

economies react to an aggregate shock. Section 5 concludes. Finally, the appendix contains all

the proofs that are not presented in the text.

2 The Model

Consider an economy with a continuum of in�nitely-lived households, composed of two agents,

a consumer and a producer. Time is discrete and each period agents produce and consume a

single, perishable consumption good. The economy has a simple periodic structure, that is,

each time period t is divided in three sub-periods, s = 1; 2; 3. To simplify the exposition, we

will call them �periods,�whenever there is no risk of confusion. There is an exogenous supply

of �at money, which will be used as the medium of exchange. The government pays a constant

nominal rate of return R on money balances, which is �nanced with taxation.

In periods 1 and 2, the consumer and the producer from each household travel to spatially

separated markets, or islands, where they interact with consumers and producers from other

households. On each island there is a competitive market, as in Lucas and Prescott (1974).

Each market is characterized by anonymity, therefore the only type of trades that are feasible

are spot exchanges of money for goods. There is a continuum of islands and each island receives

the same mass of consumers and producers every period. We assume that the allocation of

agents to islands satis�es a law of large numbers, so that each island receives a representative

sample of consumers and producers. The consumer and the producer do not communicate

during periods 1 and 2, however, at the end of both periods, they meet and they share money

holdings and information. In period 3 consumers and producers trade in a centralized market.

Each period 1 the producer has access to the linear technology

y1 = �n

where y1 is output, n is labor e¤ort by the producer, and � is a random productivity parameter,

which is the same for all the producers in a given island. The productivity shock is realized
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after producers and consumers have been assigned to their islands, and is revealed to all

the agents in the island. The distribution of productivity shocks across islands is given by

a continuous distribution with bounded support
�
�; �
�
and cumulative distribution function

F (�). In periods 2 and 3 the producers have �xed endowments of consumption goods, e2 and

e3. We will assume that the value of e3 is large, so as to ensure that the consumption c3 is

non-negative in all the equilibria we study.

The shock � is the source of idiosyncratic income volatility in our economy. The consumers

in period 1 has to make his spending decisions before knowing the shock faced by his producer.

This introduces a precautionary motive in his behavior. The strength of this precautionary

motive will depend on the ability of households to self-insure against income shocks. This, in

turns, will depend on the nominal rate of return on money R�xed by the government.

The preferences of the household are represented in recursive form by the utility function:

Vt = Et
�
c1;t + �u (c2;t � v (nt)) + �2c3;t + �3Vt+1

�
;

where cs;t is consumption in period (s; t), nt is labor e¤ort and Vt is the expected utility of

a consumer at date t. The function u is increasing and strictly concave, and the function v,

representing the cost of e¤ort, is increasing and convex. The assumption that the cost of e¤ort

takes the form of a �monetary� cost at date 2, is made mostly for analytical convenience.

Given that we want to focus on the demand side of the economy, this allows to simplify greatly

the supply side. A natural interpretation of this assumption is to interpret nt as a capacity

choice by the �rm owned by the household, and to interpret v (nt) as a maintenance cost,

incurred at date 2, which is increasing in the capacity employed. We also make some useful

technical assumptions on u and v. Namely, assume u satis�es the standard Inada condition

limx!0 u0 (x) =1. The function v satis�es the conditions v (0) = v0 (0) = 0 and the elasticity

v00n=v0 is bounded above.

The discount factor � 2 (0; 1) is constant between consecutive sub-periods. Assuming that

in period 3 producers and consumers are located in the same island and have linear utility, is

essential to simplify the analysis of the equilibrium. This assumption allows us to obtain an

analytical characterization of the steady state distribution of money balances, as in Lagos and

Wright (2005).1 In equilibrium, agents in period (3; t) will reallocate money balances among

1The extension of the Lagos and Wright (2005) environment to a 3-period setup is also pursued in Berentsen
et al. (2005), which use it to study the distributional e¤ects of monetary policy.

4



themselves, so that in the following period, (1; t+ 1), they will all start with the same stock

of money.

Finally, we need to specify the way in which the government determines money supply. Let

M denote the money stock in period 1. The government injects money in periods 2 and 3 to

cover for the interest payments. In period 3 the government retires money, so as to keep the

money stock constant. This requires a lump sum tax, T , that satis�es the following condition:2

R
�
R2M � T

�
=M: (1)

Monetary policy is �xed and is characterized by the two parameters R and M . Since we want

to focus on steady state equilibria with stationary nominal prices, we need to restrict R in the

interval [0; 1=�]. We will see that given choices for R and M , will determine the real value of

the nominal tax T .

Notice that we allow for R S 1. In the case R > 1 the asset in our economy resembles a
liquid nominal bond, while in the case R < 1 it is like �at money subject to a positive in�ation

tax.3 The assumption of interest-paying money balances is a general way of introducing a

government-supplied liquid asset. Since we will have stationary nominal prices, R will corre-

spond to the real rate of return on money in this economy. In turns, higher levels of R will

correspond to a larger real supply of public liquidity.

2.1 First-best allocation

In this section we describe the �rst-best allocation, as a benchmark for our economy. Consider

a social planner who allocates consumption to households and decides the labor e¤ort of the

producers. Given that agents do not make any investment decision, there is no intertemporal

link between time t and t + 1. This allows us to simplify the welfare analysis, by focusing on

the �static�planner problem which only includes periods s = 1; 2; 3.

Each household is characterized by a pair (�; �̂), where � denotes the productivity shock of

the producer and �̂ the productivity shock in the island visited by the consumer. An allocation

is given by consumption functions fcs(�; �̂)gs and an e¤ort function n(�; �̂). The planner

2Here we are assuming that the government retires T at the end of period (3; t) and, at the beginning of
period (1; t+ 1), it pays the interest R on the remaining money balances R2M � T .

3The model can be rewritten with a zero nominal interest rate, and a positive or negative growth rate of the
money stock. It is easy to show that our steady state with R < 1(> 1) and stationary prices, corresponds to the
steady state of an economy with zero nominal rate, positive (negative) money growth, and positive (negative)
in�ation.
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chooses an allocation that maximizes the ex-ante utility of the representative householdZ Z h
c1(�; �̂) + �u(c2(�; �̂)� v(n(�; �̂))) + �2c3(�; �̂)

i
dF (�̂)dF (�) :

The planner is constrained only by the resource constraints of the economy. In period 1 total

consumption in an island with shock �̂ cannot exceed production by producers located in the

same island, that is,4 Z
c1(�; �̂)dF (�) �

Z
�̂n(�̂; �)dF (�):

In periods 2 and 3, average consumption cannot exceed the given endowment, that is,Z Z
c2(�; �̂)dF (�) dF (�̂) � e2; (2)Z Z
c3(�; �̂)dF (�) dF (�̂) � e3:

The following Proposition characterizes the optimal allocation.5

Proposition 1 The optimal allocation is characterized by

c1(�; �̂) = cFB1 (�̂) = �̂nFB(�̂);

n(�; �̂) = nFB (�) ;

c2(�; �̂) = cFB2 (�) ;

for each pair (�; �̂), where nFB (�) and cFB2 (�) satisfy

�

v0 (nFB(�))
= � for all �; (3)

�u0
�
cFB2 (�)� v(nFB(�))

�
= � for all �; (4)

� is a positive constant, and

cFB2 (�)� v(nFB(�)) = e2 �
Z
v
�
nFB(~�)

�
dF
�
~�
�
for all �: (5)

The variable � in the proposition corresponds to the Lagrange multiplier of the resource

constraint (2). This proposition highlights two interesting features of the optimal allocation.

First, the optimal e¤ort of the producer of household (�; �̂) depends exclusively on his own

4Here, we are making the assumption that the distribution of � for the consumers (producers) related to the
producers (consumers) in island �̂, is independent of �̂ and equal to F (�). This assumption simpli�es notation,
but can be easily dispensed with.

5 In the appendix we will give a full characterization of the optimum.
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type �. Second and more important, at the optimum c2 � v(n) is constant across households.

This guarantees that the marginal utility of all households in period 2 is equalized and shows

that the �rst-best allocation displays full insurance. Agents consumption in period 2 is set

exactly to compensate for the e¤ort level determined by the idiosyncratic shock in period 1.

Finally, notice that, given linearity, the consumption levels at date 3 are indeterminate.

So far we have assumed that the planner can overcome the informational problem faced by

the households, that is, the planner knows the shocks faced by the consumer and the producer

from each household, when choosing the allocation. However, Proposition (1) shows that this

requirement is not necessary, given that the optimal allocation only uses information about

the local shock � to determine the consumption and production of the agents located in that

island.

3 Equilibrium

We turn now to the de�nition and characterization of the competitive equilibrium. We begin

by characterizing optimal individual behavior for given prices. The function p1;t (�) denotes

the nominal price in period 1 in the island with shock �, and p2;t and p3;t are the nominal prices

in periods 2 and 3. Consider a household with an initial stock of money m in period t. The

consumer chooses c1(�̂), only based on the productivity shock observed in the island where he

is located, �̂, while the producer chooses his labor e¤ort n(�) only based on the productivity

in his island, �.6

Given that all exchanges are anonymous, agents have to use cash to �nance their purchases,

and, moreover, cash holdings are restricted to be non-negative. In period 1 the consumer budget

constraint and the liquidity constraint are then:

m1(�̂) + p1;t(�̂)c1(�̂) � m; (6)

m1(�) � 0: (7)

At the end of period 1, the consumer and the producer get back together, therefore the cash

available to consumers at the beginning of period 2 includes the producer�s revenue from

the previous period, including any interest income. The budget constraint and the liquidity

6Given that we use a recursive formulation for the household problem, we drop the time subscript t for the
household-speci�c shocks, � and �̂, and for the household choice variables.
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constraint are now:

m2(�; �̂) + p2;tc2(�; �̂) � R
�
m1(�̂) + p1;t (�) y1(�)

�
; (8)

m2(�; �̂) � 0: (9)

Finally, in period 3, consumer and producer are located in the same island and they only need

to �nance the net expenditure c3 � e3. The constraints are now:

m3(�; �̂) + p3;tc3(�; �̂) � p3;ty3 +R (m2 + p2;ty2)� T; (10)

m3(�; �̂) � 0: (11)

Let Vt (m) denote the expected utility at the beginning of period t of a household with

initial nominal balances m. The household problem is characterized by the Bellman equation

Vt (m) = max
fcsg;fmsg;n

E
�
c1 + �u (c2 � v (n)) + �2c3 + �3Vt+1 (Rm3)

�
; (12)

subject to the constraints (6)-(11) for each pair of shocks � and �̂, and the technological

constraints

y1 (�) = �n (�) ; y2 = e2; y3 = e3:

Note that fcsg ; fmsg and n are functions of the shocks � and �̂ in the manner described above.

We are now in a position to de�ne a competitive equilibrium. Let Ht denote the cross-

sectional distribution of cash balances at the beginning of period (t; 1), with supportMt.

De�nition 1 A competitive equilibrium is given by a sequence of prices
�
fp1;t (�)g� ; p2;t; p3;t

	
,

of allocations ffnt (�;m)g�;m2Mt
; fc1;t(�̂;m)g�̂;m2Mt

; fc2;t(�; �̂;m); c3;t(�; �̂;m)g�;�̂;m2Mt
g and

of money distributions fHtg, such that:

1. The allocations are solutions to (12) for each t and m 2Mt.

2. Market clears Z
mdHt = M;Z

c1;t(�̂;m)dHt =

Z
�̂nt(�̂;m)dHt 8�̂;Z Z Z

cs;t(�; �̂;m)dFdFdHt = es, s = 1; 2:
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3. The sequence fHtg is consistent with the transition probability for money holdings derived

from individual behavior.

In this de�nition, we omit the money balances from the allocation and we omit the money

market equilibrium conditions in periods 1 and 2. Market clearing in the goods markets

ensures that the money market clears in these two periods.7 The �nal money balances m3 can

be derived from the consumer budget constraints and are used, implicitly, to check condition

3.

From now on, we focus on steady states where nominal prices and allocations are constant

over time and where the cross sectional distribution of money holdings is degenerate, i.e., all

agents begin each period (1; t) with m = M . As in Lagos and Wright (2005), competitive

equilibria of this simple form exist because agents have linear utility in period 3, while the

value function V (m) is concave. In equilibrium, all agents will adjust their consumption in

period 3, so as to reach the same level of m3, irrespective of the history of their shocks. For

any initial distribution H0 of money holdings, the economy will converge in one period to this

steady state.8

3.1 Unconstrained equilibrium

Now we consider two cases which capture the e¤ect of the liquidity constraints on the equilib-

rium determination. First, we look at the case where the government sets a high enough rate

of return on liquid assets that the economy is able to achieve the �rst-best allocation. This

case corresponds to R = 1=�, that is, to a monetary policy that follows the Friedman rule.

Second, we look at the case where the rate of return is so low that the allocation in periods 1

and 2 looks like the allocation in a static economy with uninsurable income shocks. We show

that this case arises whenever R � R̂, for a given cuto¤ R̂ 2 (0; 1=�).

The following proposition shows that, under the monetary policy R = 1=�, there exists an

equilibrium that achieves the e¢ cient allocation of resources.9

Proposition 2 Under the monetary policy R = 1=� and M > 0, there exists an unconstrained

equilibrium that implements the �rst-best allocation.

7This is just Walras�law, period by period.
8The assumption of a large e3 guarantees that this transition is feasible for any H0.
9This e¢ ciency result is related to a result in Rocheteau and Wright (2005), which extends Lagos and Wright

(2005) environment to a setting with competitive markets.
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Proof. We proceed by guessing and verifying that the economy can achieve an equilibrium

that implements the �rst-best. First, conjecture that agents are never liquidity constrained,

that is, ms > 0 for each s and each realization of � and �̂. We will call this type of equilibrium

�unconstrained.�Moreover, conjecture the following values for the nominal prices:

p1(�) = � for all �; (13a)

p2 = �u0(cFB2 (�)� v(nFB(�))); (13b)

p3 = �: (13c)

Up to the scaling factor �, these are equal to the shadow prices derived from the planner

problem in 2.1. The factor � is endogenous and is derived below.

The household optimality conditions can be rearranged to give the labor supply equation,

n (�) = v0�1
�
�R
p1 (�)

p2

�
for all �; (14)

and, the consumer Euler equations,

1 = �R
p1(�̂)

p2
E
h
u0
�
c2(�; �̂)� v (n(�))

�
j�̂
i
for all �̂; (15)

u0
�
c2(�; �̂)� v (n(�))

�
= �R

p2
p3
for all �; �̂;

1 = �3R
p3
p1
;

which are derived under the conjecture that ms > 0.10 With R = 1=�, it is easy to check that

these optimality conditions are satis�ed if we substitute the �rst-best allocation for fcsg and

n.

Next, we check that the consumers are, indeed, not liquidity constrained. To do that, sub-

stitute the �rst best allocations in the consumer�s budget constraints and use market clearing

to obtain:

m1(�̂) = M � p1cFB1 (�̂); (16)

m2(�; �̂) = R(m1(�̂) + p1c
FB
1 (�))� p2cFB2 (�) ; (17)

m3(�; �̂) = R(m2(�; �̂) + p2e2) + p3[e3 � c3(�; �̂)]� T; (18)

where T satis�es (1). To have a stationary, degenerate distribution of money balances, we set

m3(�; �̂) =M=R. Choosing a small enough value for � it is possible to show that (16) and (17)

10See the Appendix for the derivation of these optimality conditions, in the general case ms � 0.

10



give m1 > 0 and m2 > 0 for any realization of � and �̂. Finally, we can use equation (18) to

obtain e3 � c3(�; �̂) as a residual. Our assumption that e3 is large ensures that c3 will always

be non-negative.

Notice that, under this monetary policy, the price level is indeterminate, since we can

choose any scaling value � > 0 smaller than a given cuto¤ �̂, which depends on M . To pin

down the price level, one can �x a value for the real tax � � T=p3 and then obtain p3 = T=� .

This shows that an alternative statement of Proposition 2 is that if � is larger than a cuto¤ �̂U

then there exists an equilibrium with R = 1=�.11 A high level of real taxation corresponds to a

high real value of the liquid asset M circulating in the economy. To sustain the �rst best level

of risk sharing the government has to commit enough �scal resources to ensure that public

liquidity pays the real rate of return R = 1=�.

A further remark on the equilibrium distribution of nominal balances. If R = 1=� and

� < �̂, this distribution is not uniquely pinned down. In this case the value function V (m)

is locally linear at m = M , and agents are indi¤erent between consuming a bit less (more)

in period 3 and increasing (decreasing) their money balances m3.12 Therefore, there are also

equilibria where agents choose di¤erent values for m3 and the distribution of money balances

is non-degenerate. These equilibria are identical to the one described in terms of consumption

in periods 1 and 2, and in terms of labor e¤ort. They only di¤er for the distribution of c3, and

therefore are ex-ante equivalent in terms of welfare.

3.2 Constrained equilibrium

We now turn to the case where agents are constrained. In particular, for tractability, we focus

on the case where the constraint is always binding in period 2, and never in period 1. The

following proposition shows that, with an assumption on the distribution F (�), this type of

equilibrium arises when R is su¢ ciently low.

Proposition 3 Suppose the lower support of � is 0. There exists a cuto¤ R̂ 2 (0; 1=�) such

that, if R � R̂, then there is an equilibrium with:

(i) m1(�̂) > 0 for all �̂.

11The monetary regime can be de�ned either in terms of the pair (R;M), with R 2 (0; 1=�] and M > 0, or
in terms of the pair (� ;M) with � in some interval [� ; � ] and M > 0. This two ways of de�ning the monetary
regime are interchangeable, as long as we are only concerned with stationary price paths.
12They are not indi¤erent to large changes in m3, because their liquidity constraints can be binding in the

following periods 1 or 2.
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(ii) m2(�; �̂) = 0 for all �; �̂.

From now on, for brevity, we will call this type of equilibrium a �constrained equilibrium.�

The reason why agents are never against the constraint in period 1 is that the lower bound for

producers�income is zero and u (:) satis�es the Inada condition limx!0 u (x) =1. Therefore,

consumers always keep some extra cash at the end of period 1 to make sure that they can

consume a positive amount in period 2. It follows that, under these assumptions, the constraint

m1 � 0 will never bind for any level of R.

Given that m2 = 0, the consumer budget constraints in periods 1 and 2 can be aggregated

to give

p2c2 = p2e2 �Rp1(�̂)c1 +Rp1(�)�n: (19)

Notice the presence of e2 on the right-hand side. Since the liquidity constraint is binding for

all agents at date 2, a simple �quantity-theory equation�determines the price level p2, that is,

RM = p2e2;

and the real value of the money balances is identical to the endowment e2. Since all agents

begin period 1 with m =M , (19) follows.

The equilibrium in periods 1 and 2 is formally equivalent to the equilibrium of a two-

period economy where agents face uninsurable income shocks. The household problem reduces

to choosing c1(�̂) and n(�) to maximize

E
h
c1(�̂) + �u (c2 � v (n))

i
subject to (19) for all � and �̂. In particular, the consumer needs to choose c1(�̂) before knowing

the realization of the productivity shock �, which will determine his available income in period

2. The consumer Euler equation in period 1 can now be written as:

1 = �R
p1(�̂)

p2

Z �

�
u0

 
e2 �R

p1(�̂)

p2
c1(�̂) +R

p1 (�)

p2
�n (�)� v (n (�))

!
dF (�): (20)

On the other hand, optimal labor supply is still given by (14), given our assumption that labor

e¤ort enters in quasi-linear form in period 2. In fact, the main role of this assumption is to

simplify the treatment of labor supply, so that we can focus on consumer choice. Substituting

the market clearing condition c1(�̂) = �̂n(�̂) and the labor supply equation (14), equation 20
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de�nes a functional equation for p1 (:). The proof of Proposition 3 shows that this functional

equation has a unique solution.

To ensure that the allocations derived for periods 1 and 2 are part of a full dynamic

equilibrium, we need to ensure that the constraint m2 � 0 is indeed binding for all pairs of

shocks � and �̂. The proof of Proposition 3 shows that when R � R̂ this condition is met.

An interesting feature of this equilibrium is that, as long as R 2 (0; R̂), the choice of R has

no e¤ects on the consumption allocation. The only real variables a¤ected by the choice of R

are the value of real balances in period 3 and the value of the real tax � , required to support

the equilibrium. As in the case of Proposition 2, also Proposition 3 can be restated in �scal

terms. Namely, there is a cuto¤ �̂C , such that if � � �̂C , then there is an equilibrium with

R � R̂ and binding liquidity constraints. If the government commits limited �scal resources

to sustain the value of public liquidity, then agents have limited liquid assets to insure against

temporary income shocks.

The crucial di¤erence between this case and the unconstrained case in Proposition 2 is

that now consumers in period 1 are concerned about the value of their income p1 (�) �n (�),

when making their spending decisions. The income risk, due to the volatility of �, induces

a precautionary behavior on the consumers� side. This has two consequences. First, if a

consumer expects higher realizations of �, he will increase consumption in period 1, since he

is less worried about having low liquidity in period 2. This will increase the price p1(�̂), in

the market where the consumer is located, and increase output. Second, there is a general

equilibrium feed-back involving the spending decisions of consumers. If consumers in all other

markets are increasing their demand, the prices p1(�) increase and the output of the producers

increases. Hence, the consumer in island �̂ will expect a higher income and he will increase his

own demand. Through this channel the initial increase in demand is ampli�ed. Both e¤ects

will play a crucial role in the following section.

We conclude this section with a characterization of the equilibrium price function p1 (�).

Lemma 1 The price p1 (�) is a monotone decreasing function of �. The function R�p1 (�) =p2

is monotone increasing in �.

This Lemma shows that the price p1 has to be lower for higher values of �, in order to

encourage consumers to increase spending when they are in islands with high productivity. In

the case of the unconstrained equilibrium, this is not necessary, because consumers can spread

13



their increased spending over a longer horizon (i.e. until period 3) and they are happy to

increase their spending at the constant price p1 = 1.

4 Liquidity Constraints and the Response to Aggregate Shocks

The main question we want to address is how an economy with binding liquidity constraints

responds to an aggregate productivity shock, and whether it responds more or less than an

unconstrained economy. Let us focus on the e¤ects of a shift in the distribution of the produc-

tivity shocks �, which can be interpreted as an unexpected aggregate shock.13 Speci�cally, we

consider a shift that reduces the probability of low shocks and increases the probability of high

shocks, i.e. an increase in the sense of �rst-order stochastic dominance. This has two direct

e¤ects on output. First, there is an own-productivity e¤ect. Since a mass of producers ends up

in islands with higher productivity shocks, there is a mechanical increase in total output. This

e¤ect is positive both in an unconstrained economy and in a constrained economy. Second,

there is an e¤ect that works through income expectations. The behavior of a consumer in a

given island, with a given local productivity shock, changes because he expects the producer of

his household to receive, on average, higher productivity shocks in other islands. This means

that the household will expect higher income. In the unconstrained economy this will have

no e¤ect on consumption decisions, given that the household is, de facto, fully insured against

income shocks. On the contrary, in the constrained economy this will have a positive e¤ect on

consumption expenditures. This expected income e¤ect tends to make the output response of

an economy with binding liquidity constraints larger relative to the unconstrained benchmark.

On top of these two direct e¤ects, we also analyze a general equilibrium e¤ect. Interestingly,

this e¤ect magni�es the response in the liquidity constrained economy, and dampens it in the

unconstrained case.

4.1 Expected income and general equilibrium

Suppose that the distribution of the productivity shocks depends continuously on the aggre-

gate parameter � 2 R. In particular, assume that a distribution with a higher � �rst-order

stochastically dominates a distribution with lower �. From now on, we write the cumulative

13At the expense of further notation, the results in this section can be easily extended to a model with an
explicit treatment of aggregate shocks.
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distribution function of � as F (�; �).14 De�ne aggregate output as

Y �
Z �

�
�n (�; �) dF (�; �) =

Z �

�
c1 (�; �) dF (�; �) :

We use d lnY=d� as a measure of output response, that is, we focus on the proportional

response of output. This normalization will help in comparing di¤erent monetary regimes,

since the average level of output will be in general di¤erent. This measure can be decomposed

as follows

d lnY

d�
=

R �
�
@f(�;�)
@� �n (�; �) d�

Y
+

R �
�
@c1(�;�)
@� dF (�; �)

Y
: (21)

The �rst member on the right-hand side represents the own-productivity e¤ect we discussed

above. This shock increases the probability of higher values of �, and thus increases aggregate

output in both monetary regimes. The second member captures the endogenous response of

consumption for each given level of �. This captures both the expected income and the general

equilibrium e¤ects. We focus now our attention on this term and show that it has opposite

signs in the two regimes.

From now on, we use U to denote the unconstrained equilibrium derived in Section 3.1 and

C for the constrained equilibrium in Section 3.2.

First, consider the case of an unconstrained economy, under the monetary regime R = 1=�.

In this case the second term on the right-hand side of equation (21) represents a pure general

equilibrium e¤ect. Consider market �̂, that is, the market in period 1 in an island with

productivity shock �̂. The demand and the supply sides of the market �̂ are respectively fully

determined by

1 = �R
p1(�̂; �)

p2(�)

Z
u0(c2(�̂; �; �)� v (n (�; �)))dF (�; �) (22)

and

n
�
�̂; �
�
= v0�1

 
�̂R
p1(�̂; �)

p2(�)

!
: (23)

Consider �rst the following partial equilibrium exercise. Fix �� and keep constant p1
�
�; ��
�

for all � 6= �̂, p2
�
��
�
and p3

�
��
�
. If the consumers on market �̂ face these prices, they expect

u0(c2�v (n)) to be constant and equal to �p2
�
��
�
=p3

�
��
�
, by the Euler equation between periods

2 and 3. Then, equation (22) shows that the price p1
�
�̂; �
�
will be unchanged, and (23) shows

that labor e¤ort, n
�
�̂; �
�
, will be constant. However, once we look at the general equilibrium,

14Assume that the support is
�
�; �
�
and is independent of �.
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we realize that prices must change in response to an aggregate shock. In particular, when �

increases, more households have to exert a high labor e¤ort. Since households want to keep

u0 (c2 � v (n)) constant, this tends to increase the demand for consumption in period 2. Given

that the endowment of period 2 goods is �xed this cannot be an equilibrium, and prices in

period 2 must increase. Hence, by (23), labor e¤ort and consumption in period 1 will decrease

in any island �. The following proposition formalizes this mechanism.

Proposition 4 Consider an unconstrained economy with R = 1=�. The consumption function

cU1 (�; �) is decreasing in � for all �.

It follows that the general equilibrium e¤ect is negative and dampens the output response

to the aggregate shock.

Next, consider the case of a constrained economy, assuming R < R̂.15 Proposition 5 shows

that in this case the second term on the right-hand side of equation (21) is positive, as, for any

given �, consumption in period 1 increases with �. We can decompose this e¤ect into three

di¤erent elements. First, there is a partial equilibrium e¤ect driven by income expectations.

Consider the same partial equilibrium exercise we have performed in the unconstrained case.

Demand and supply in market �̂ are still given by (22) and (23). However, now u0(c2 � v (n))

is no longer constant, as agents are liquidity constrained and

c2

�
�̂; �; �

�
= e2 �R

p1(�̂; �)

p2(�)
c1(�̂; �) +R

p1 (�; �)

p2(�)
�n (�; �) :

Recall that Lemma 1 shows that �n (�; �)Rp1 (�; �) =p2(�) � v (n (�; �)) is increasing in �, so

the marginal utility u0(c2 � v (n)) is decreasing in �. It follows that, now, when � increases

the integral on the right-hand side of (22) becomes smaller and relative prices in island �̂ tend

to increase.16 The intuition behind this result is that when a liquidity constrained consumer

expects higher income, his marginal value of money decreases. Then, he reduces his precau-

tionary reserves and increases consumption in period 1. On the top of this channel, there is

a general equilibrium feed-back e¤ect. When an agent expects higher income and decides to

spend more in period 1, the prices of the goods produced in period 1 increase in all islands,

increasing labor supply and output. This increases further expected income in period 2 and

leads to a further increase in consumption spending in period 1.
15Notice that R̂ depends on � continuously. For small changes in �, R < R̂ ensures that the economy remains

in a constrained equilibrium.
16The fact that the integral decreases follows from the fact that an increase in � leads to a shift of the

distribution of � in the sense of �rst order stochastic dominance.
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Proposition 5 Consider a constrained economy, with R < R̂. The consumption function

cC1 (�; �) is increasing in �, for all �.

This proposition shows that the expected output e¤ect together with the general equilib-

rium mechanism tend to magnify the output response to aggregate shocks in the constrained

economy.

The question that remains to be addressed is whether, overall, a constrained economy

reacts more or less to an aggregate shock than an economy with full insurance. Going back to

equation (21), Propositions 4 and 5 show that the second term of the decomposition is negative

in the unconstrained case and positive in the constrained one. However, we do not know the

relative magnitude of the �rst term in the decomposition, which we know is positive in both

cases. In order to compare the total output response of the two economies, we turn to some

examples.

4.2 An example with a binary shock

Assume that u (x) = x1��= (1� �), v (x) = x2=2 and � 2
�
0; �
	
. Denote by � the probability

of � = �.17 In this case, � takes the place of �, since a higher � corresponds to �rst-order

stochastically dominant distribution.

Proposition 6 Suppose v (x) = x2=2 and � 2
�
0; ��
	
, then d lnY=d� is bigger when R � R̂

than when R = 1=�.

Proof. When R = 1=�, the unconstrained equilibrium is characterized by

cU (�;�) = cFB (�;�) =
�2

� (�)
;

where, from (3)-(5), � is implicitly de�ned by�
�

� (�)

� 1
�

+
�

2

�
�

� (�)

�2
= e2: (24)

Then, notice that aggregate output can be written as

Y U =
��

2

� (�)
:

17All the results obtained for continuous distributions can be easily generalized to discrete distributions.
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Consider an increase in �. Equation (24) implies that �0 (�) > 0. Then

dY U

d�
=

�
2

� (�)
� ��

2

� (�)2
d� (�)

d�
;

and
d lnY U

d�
=
1

�
� 1

�

d� (�)

d�
� 1

�
:

When, instead, R � R̂, then the economy achieves a fully constrained equilibrium allocation.

Then, from (??) we get

cC(��) = �r;

and substituting in (??) gives a functional equation in �r given by

�� = ��r

�
�u0

�
e2 �

1

2
�r2
�
+ (1� �)u0

�
e2 � �r2

��
: (25)

The total output is now

Y C = ��r�

which implies
dY C

d�
= �r� + ��

d�r

d�

Given that equation (25) shows that d�r=d� >0, it follows that

d lnY LC

d�
=
1

�
+
1

�r

d�r

d�
>
1

�
;

completing the proof.

This proposition shows that, in the example considered, the output response to a positive

aggregate shock is always higher when the liquidity constraint of the agents in the economy

is binding. In particular, with these speci�c functional forms, the own-productivity e¤ect,

adjusted for the output levels, is identical in the two economies, so that what matters is only

the second term in equation (21).

4.3 Liquidity and output volatility

Now we turn to numerical examples that show how, also for more general productivity distrib-

utions, the constrained economy can be more responsive to aggregate shocks. These examples

also allow us to explore the monetary regimes with R 2 (R̂; 1=�), where the liquidity constraints

are occasionally binding.
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We keep CRRA utility and quadratic e¤ort cost, as in the previous example, and we set

� = 1. We assume � uniformly distributed in
�
0; ��
�
. We look at a shift in the distribution of �

that reduces the mass for [0; �] by 0.1 and increases the mass for
�
� � �; �

�
by the same amount,

for � = ��=5. This represents a simple increase in the sense of �rst order stochastic dominance.

Figure 1 shows the output response to this shift for di¤erent levels of monetary policy R.

0.9 1

0.35

0.4

0.45

R

dy

1/βR
^

Figure 1. Monetary Policy and Output Response

Notice that the output response to aggregate shocks is signi�cantly higher in the constrained

economy, that is, when R � R̂, than in the unconstrained one, that is, when R = 1=�. When

R 2 (R̂; 1=�) there is an equilibrium where some agents are constrained and some are not. In

the �gure shown the response is monotone in R. We will see in the following that this is not

always the case.

The next �gure illustrates the decomposition exercise analyzed above. The green line

represents the own-productivity e¤ect, i.e. the �rst term of (21), and the blue line the total

e¤ect. The di¤erence between the two represents the second term in the decomposition (21),

capturing both the expected income e¤ect and the general equilibrium e¤ect.
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0.9 1

0.35

0.4

0.45

R

dy

1/β

Figure 2. Decomposition of the Output Response

Finally, next �gure, shows the output response of an economy with lower risk aversion, i.e.

� = 0:85, represented by the red line. As intuition suggests, the gap in the output response

between the constrained and the unconstrained economy tends to be higher when agents are

more risk averse.
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1/β

Figure 3. Ouput Response and Risk Aversion

Finally, it is worth noticing that when risk aversion is lower the output response of the

economy is non-monotone in R in the region where liquidity constraints are occasionally bind-

ing.

[To be completed.]

5 Conclusions

In this paper we have analyzed how di¤erent monetary regimes can a¤ect the response of

an economy to aggregate shocks. When agents are liquidity constrained, the response of

the economy tends to be magni�ed. In particular, when a positive aggregate shock hits the

economy, consumers have higher income expectations, they need to build up less precautionary

reserves and increase consumption spending. This feeds-back into higher income expectations

of other agents and ampli�es further the spending response.

Our mechanism is driven by the combination of decentralized trade, risk aversion and idio-

syncratic uncertainty. All these three ingredients are necessary. In fact, the ampli�cation e¤ect

described would disappear in a representative agent version of the model with no idiosyncratic

risk, even if we keep an anonymous setup with decentralized trading.
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To keep the model analytically tractable, we have assumed linear preferences in period

3. This allows agents, in the unconstrained regime, to fully insure against negative income

shocks in period 2 by adjusting their period 3 consumption. In a model with concave utility

in all periods, this type of adjustment would only be possible if shocks are temporary. In that

case, the consumer would be able to smooth a negative income shock in period 2, by lowering

consumption by a small amount in all future periods, so as to go back to the initial money

balances. Our simplifying assumptions allows agents to adjust in one shot. However, it would

be interesting to study a more general environment, and to explore the full dynamics of our

mechanism, with di¤erent degrees of persistence for the shocks.
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Appendix

Preliminary Results for Proposition 3

In order to prove Proposition 3 it is useful to perform a change of variables and to prove some preliminary
lemmas. These results will also be useful also to prove Propositions 5.

De�ne the real wage in terms of period 2 consumption as:

w (�) � �Rp1 (�)
p2

; (26)

and de�ne the value of consumption at date 1, in island �, in terms of period 2 consumption:

x (�) � w (�) v0�1 (w (�)) : (27)

Let the function W (x) be the inverse of wv0�1 (w), de�ned implicitly by

x =W (x) v0�1 (W (x)) : (28)

Given that wv0�1 (w) is strictly monotone for w 2 [0;1), and limw wv0�1 (w) =1, this inverse is well
de�ned for x 2 [0;1).

Also de�ne the function
I (x) � e2 + x� v

�
v0�1 (W (x))

�
: (29)

Finally, de�ne the upper bound on the inverse elasticity of labor supply:

�� = sup
n

nv00 (n)

v0 (n)
:

Lemma 2 The functions W (x) and I (x) satisfy the following properties:

W 0 (x) =
v00 (n)

nv00 (n) + v0 (n)
;

I 0 (x) =
nv00 (n)

nv00 (n) + v0 (n)
2 [0; �];

where n = v0�1 (W (x)) and

� =
��

1 + ��
< 1.

Proof. From (28), di¤erentiating both sides and substituting gives:

1 = nW 0 (x) +
v0 (n)

v00 (n)
W 0 (x)

where n is de�ned in the statement of the lemma, and we obtain the �rst result.
Di¤erentiating (29) gives:

I 0 (x) = 1� v0 (n)

v00 (n)
W 0 (x)

and, substituting W 0 (x) the second result follows.
Now, we can rewrite the functional equation (20) in terms of the function x (:), as

�̂ � �W
�
x
�
�̂
��Z

u0
�
I (x (�))� x

�
�̂
��
dF (�) = 0: (30)
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De�ne the mapping x = T (x0), where x
�
�̂
�
solves the following equation for each �̂:

�̂ � �W
�
x
�
�̂
��Z

u0
�
I
�
x0 (�)

�
� x

�
�̂
��
dF (�) = 0: (31)

Let �x be the unique solution to:

�� = �W (�x)u0 (I (�x)� �x) :

Lemma 3 If x0 (�) 2 [0; �x] 8�, equation (31) has a unique solution x
�
�̂
�
2 [0; �x] for each �̂ 2

�
�; �
�
.

This solution is increasing if x0 (�) increases on a set of positive measure.

Proof. A unique solution exists in [0;1), because as x
�
�̂
�
varies from 0 to min� I

�
x0 (�)

�
, the

left-hand side of (31) is a continuous decreasing function, going from �̂ to �1.
To show that the solution is bounded by �x, suppose, instead, that x

�
�̂
�
> �x. Consider the following

chain of inequalities

�̂ = �W
�
x(�̂)

�Z
u0
�
I
�
x0 (�)

�
� x

�
�̂
��
dF (�) �

� �W
�
x(�̂)

�
u0
�
I (�x)� x

�
�̂
��
>

> �W (�x)u0 (I (�x)� �x) = ��;

where the �rst inequality follows from the fact that I is increasing and u0 decreasing, and the second
from the fact that W is increasing and from our hypothesis. Since �̂ � ��, we have a contradiction.

From the implicit function theorem, and from the fact that I is increasing, it follows that the

solution x
�
�̂
�
is increasing if x0 (�) increases on a set of positive measure.

Lemma 4 Fix an a > 0. Let x
�
�̂
�
= T

�
x0
� �
�̂
�
and xa

�
�̂
�
= T

�
x0 + a

� �
�̂
�
. Then the follow

inequality applies

xa
�
�̂
�
� x

�
�̂
�
� �a;

where � is de�ned as in Lemma 2.

Proof. Notice that xa
�
�̂
�
satis�es

�̂ � �W
�
xa
�
�̂
��Z

u0
�
I
�
x0 (�) + a

�
� xa

�
�̂
��
dF (�) = 0;

by de�nition. Suppose, by contradiction, that xa
�
�̂
�
> x

�
�̂
�
+ �a. Given that I 0 (x) � � we have

I
�
x0 (�) + a

�
� I

�
x0 (�)

�
� �a 8�;

and this implies

I
�
x0 (�) + a

�
� xa

�
�̂
�
< I

�
x0 (�)

�
� x

�
�̂
�
8�.

Then

�̂ = �W
�
xa
�
�̂
��Z

u0
�
I
�
x0 (�) + a

�
� xa

�
�̂
��
dF (�) >

> �W
�
x
�
�̂
��Z

u0
�
I
�
x0 (�)

�
� x

�
�̂
��
dF (�) = �̂;

a contradiction.
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Proof of Proposition 3

The discussion in the text shows that, if we conjecture an equilibrium with m2 = 0 for all �; �̂, then (i)
the price level at date 2 is given by:

p2 =
RM

e2
;

and (ii) the prices at date 1, can be solved by solving the functional equation (20). This functional
equation has been restated above as a functional equation in terms of the function x (:) de�ned in (27)
(see the functional equation (31)).

Lemmas 3 and 4, show that the map T , de�ned in (31), is a map from the space of bounded functions
in [0; �x], to the same space, and satisfy the assumptions of Blackwell�s Theorem. Namely, Lemma 3
proves monotonicity and Lemma 4 proves the discounting property, for the discount factor �. Therefore
a solution exists and is unique.

This step also gives us the real allocation in periods 1 and 2. In particular, this allocation be
characterized by the following c2(�; �̂) and n(�):

n (�) = v0�1 (W (x (�))) ;

c2

�
�; �̂
�

= I (x (�))� x
�
�̂
�
;

(see (28) and (29)).
To check that m2 = 0 is optimal, we need to verify that

u0
�
c2

�
�; �̂
�
� v

�
n
�
�̂
���

� �Rp2
p3
for all �; �̂: (32)

The results in Lemma 1 can be used to show that the allocation derived for periods 1 and 2 satis�es the

following condition: c2
�
�; �̂
�
� v (n (�)) is increasing in � and decreasing in �̂. Therefore, a necessary

and su¢ cient condition for 32 is:

u0
�
c2
�
��; �
�
� v

�
n
�
��
���

� �Rp2
p3
:

To check this condition we need to derive the equilibrium value of p3. The consumer Euler equation
in period 3 is

1

p3
= �R

Z
1

p1(�̂)
dF
�
�̂
�
;

while the consumer Euler equation in period 1 can be rewritten as:

1

p1(�̂)
= �

R

p2

Z
u0
�
c2(�; �̂)� v (n (�))

�
dF (�) :

Substituting, we obtain:

1

p3
= �2

R2

p2

Z Z
u0
�
c2

�
�; �̂
�
� v (n (�))

�
dF (�) dF

�
�̂
�
; (33)

which gives us the equilibrium value of p3. Substituting in (32) we get:

u0
�
c2
�
��; �
�
� v

�
n
�
��
���

� �3R3
Z Z

u0
�
c2

�
�; �̂
�
� v (n (�))

�
dF (�) dF

�
�̂
�
.
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This gives us the upper bound R̂

R̂ � 1

�

0@ u0
�
c2
�
��; �
�
� v

�
n
�
��
���R R

u0
�
c2

�
�; �̂
�
� v

�
n1

�
�̂
���

dF
�
�̂
�
dF (�)

1A 1
3

:

To derive an upper bound on real taxes at date 3 note that, in a constrained equilibrium, real balances
at date 3 are:

M

p3
= �R

where

� � �2e2
Z Z

u0
�
c2

�
�; �̂
�
� v (n (�))

�
dF (�) dF

�
�̂
�
:

This implies that the map between R and real taxation is the following, and is independent of M ,

� = �R

�
R2 � 1

R

�
;

= �
�
R3 � 1

�
:

This is an increasing function. Moreover, when R = R̂ we obtain:

�̂C � e2
�

�
u0
�
c2
�
��; �
�
� v (n1 (�))

�
� �3

Z Z
u0
�
c2

�
�; �̂
�
� v

�
n1

�
�̂
���

dF
�
�̂
�
dF (�)

�
:

Therefore, if � � �̂C , we have an equilibrium with R � R̂.

Proof of Lemma 1

We prove the second statement �rst. De�ne the function

w (�) � R�p1 (�)
p2

;

then equation (20) can be rewritten as a functional equation in w (:), that is

f(w(�̂); �̂) = �w(�̂)

Z
u0(e2 � w(�̂)n(�̂) + w (�)n (�)� v (n (�)))dF (�)� �̂ 8�̂

where n(�̂) = v0�1(w(�̂)) and hence dn(�̂)=dw(�̂) = 1=v00(v0�1(w(�̂))). Using the implicit function
theorem we obtain

dw(�̂)

d�̂
=

"
@f(w(�̂); �̂)

@w(�̂)

#�1
where

@f(w(�̂); �̂)

@w(�̂)
=

�̂

w(�̂)
�
"
n(�̂) +

w(�̂)

v00(n(�̂))

#
�

�w(�̂)

Z
u00(e2 � w(�̂)n(�̂) + w (�)n (�)� v (n (�)))dF (�):

Given that u is concave, it follows that
dw(�̂)

d�̂
> 0
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completing the proof.
To prove the �rst part of the lemma notice that

�R
p1(�̂)

p2

Z
u0(e2 � w(�̂)n(�̂) + w (�)n (�)� v (n (�)))dF (�) = 1

and observe that w(�̂)n(�̂) is increasing in �̂.

Proof of Proposition 4

From market clearing we know that
cU1 (�; �) = �n

U (�; �) ;

where nU (�; �) = nFB (�; �), as we have shown in section 3.1. From equation (3)-(5), it follows that

cU1 (�; �) = �v
0�1 (�=� (�)) ; (34)

where � (�) solves the implicit function

u0�1
�
� (�)

�

�
+

Z
v

�
v0�1

�
�

� (�)

��
dF (�; �) = e2:

Notice that the right-hand side of this expression is decreasing in � (�). Moreover, it is increasing in
� because the integrand v

�
v0�1 (�=� (�))

�
is increasing in � and, by �rst-order stochastic dominance,

the integral is increasing in �. Applying the implicit function theorem, it follows immediately that
�0 (�) > 0. Hence, di¤erentiating expression (34) we obtain

@c1(�; �)

@�
= �

�
�

� (�)

�2
�0 (�)

v00 (�=� (�))
< 0

which concludes the proof.

Proof of Proposition 5

Introduce the parameter � in the functional equation (30)

�̂ � �W
�
x
�
�̂
��Z

u0
�
I (x (�))� x

�
�̂
��
dF (�; �) = 0: (35)

Denote the associated mapping with T (x; �).
Consider two values �I and �II , with �I > �II . Let xI (:) be the solution to (35) for �I . First, de�ne

x0 = T (xI ; �II)

and notice that x0 � xI . To prove this statement notice that u0
�
I (xI (�))� xI

�
�̂
��

is a decreasing

function of � (by Lemma 1) and, thus,
R
u0
�
I (xI (�))� xI

�
�̂
��
dF (�; �) is decreasing in �. Suppose

that x0
�
�̂
�
< xI

�
�̂
�
for some �̂, then,

�̂ = �W
�
xI

�
�̂
��Z

u0
�
I (xI (�))� xI

�
�̂
��
dF (�; �I) �

� �W
�
xI

�
�̂
��Z

u0
�
I (xI (�))� xI

�
�̂
��
dF (�; �II) >

> �W
�
xI

�
�̂
��Z

u0
�
I (xI (�))� x0

�
�̂
��
dF (�; �II) = �̂;
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gives a contradiction.
Next, de�ne the sequence of functions

�
x0; x1; :::

�
using the recursion

xj+1 = T
�
xj ; �II

�
.

Since x0 � xI and T is a monotone operator (Lemma 3), it follows that this sequence is monotone,
with xj+1 � xj . Moreover, T is a contraction, so this sequence has a limit point, which coincides with
the �xed point xII which characterizes the equilibrium for �II . Therefore, xII � xI .
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