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Abstract

Due to time-inconsistency or political turnover, policymakers’ promises
are not always fulfilled. We analyze policy problems combining commitment
and discretion. We consider three settings where the planner occasionally
defaults on past promises. In the first setting, a default may occur in any
period with a given probability. In the second, a planner does not default
during a finite tenure but disregards the promises of previous planners. In the
third, we make the likelihood of default a function of endogenous variables.
We formulate these problems recursively, and provide techniques that can be
applied to a general class of models. Our method can be used to analyze the
plausibility and the importance of commitment. In a fiscal policy application,
we find that average allocations become substantially closer to discretion. In
addition, we find that most of the welfare gains from commitment are only
achieved when credibility is already high. This result provides theoretical
support for the low investment in fiscal policy credibility.
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1 Introduction

1.1 Motivation and Contribution

In a general class of problems, households’ behavior depends on expectations of
future variables. Characterizing optimal policy in such circumstances is intricate. A
planner influences households’ expectations through its actions, and in turn house-
holds’ expectations influence the planner’s actions. Following the seminal papers
by Kydland and Prescott (1977) and Barro and Gordon (1983a), the literature has
taken two different approaches to tackle this problem - commitment and discretion.

In the commitment approach it is assumed that the planner will never default on
its past promises. Under discretion, a planner can never make and fulfil a promise.
These two settings are clearly extreme, it seems more reasonable to assume that
institutions and planners sometimes fulfill their promises and sometimes do not. In
addition, the commitment and discretion solutions can differ significantly, leaving
the researcher without a clear answer.

This paper proposes several frameworks combining commitment and discretion.
We first consider a setting where current promises will be fulfilled with a given
probability, another setting where promises are only kept during a finite tenure, and
lastly we make the likelihood of default a function of endogenous variables. There
may be several interpretations for the loose commitment settings just described. A
political economy interpretation is that governments fulfil their own promises but
it is possible that another government is elected and today’s promises will not be
kept. Another interpretation is that a government commits to future plans, but
if particular events arise, such as wars or political instability, defaulting becomes
inevitable. As it is common in the discretion literature, we consider that a default
on past promises occurs whenever a reoptimization takes place. For the purpose of
this paper it is equivalent whether such reoptimization is made by the same planner
or by a newly appointed one.

The contribution of this paper is in part methodological, we considerably gen-
eralize and extend the work of Roberds (1987) and Schaumburg and Tambalotti
(2005). We prove that the solution of these problems is recursive, and provide a
methodology that can be applied to a large class of microfounded models. It is not
possible to tell a priori whether allocations and welfare under loose commitment
will be closer to the full commitment or the full discretion cases. Since such results
are model dependent, we believe it is important to apply our methodology to any
model.

We also provide an application to a fiscal policy problem. In our application, we
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find that average allocations are substantially closer to discretion. We also conclude
that most of the welfare gains from commitment are only achieved when credibility
is already high. If one believes that fiscal policy credibility is unlikely to be high, our
result provides theoretical support for the low interest in building more credibility.
Nevertheless, one could also argue the opposite, i.e. that fiscal authority can fully
commit. In such interpretation, our results suggest that fiscal commitment is crucial
since small temptations to act discretionally are very costly.

1.2 Methodology

In a very specific model, Roberds (1987) considers that promises may not always
be kept. The author’s methodology is not generalizable to other models. Schaum-
burg and Tambalotti (2005) propose a setup equal to one of the three settings
described here, and apply it to a monetary model without state variables. Never-
theless, the authors follow a restrictive linear quadratic approach that was criticized
by Klein et al. (2004). Moreover, there is an additional drawback of applying the
linear quadratic approach in these types of problems. As shown by Debortoli and
Nunes (2006), a correct linear-quadratic approximation can in general be derived if
one imposes a timeless perspective assumption. The loose commitment framework
requires a departure from the timeless perspective. As a consequence, using the
linear-quadratic approach with loose commitment is inappropriate not only because
solutions may be inaccurate, but also because the specification of the original model
is violated.

The main tools to analyze time-inconsistent and time-consistent policy are re-
cent. The key reference for solving time-inconsistent models is Marcet and Marimon
(1998). Klein and Rios-Rull (2003) show how to solve for the time-consistent policy
with linear quadratic techniques. Klein et al. (2004) recognize that the techniques
proposed in Klein and Rios-Rull (2003) do not deliver controlled accuracy and pro-
pose a technique based on generalized Euler equations and a steady state local
analysis. Judd (2004) proposes global approximation methods instead of steady
state local analysis.

We prove the recursivity of the solution using the tools of Marcet and Marimon
(1998). In the solution procedure, we use a global method and generalized Euler
equations taking the recent contributions of Judd (2004) and Klein et al. (2004). We
show how to solve for linear and non-linear models without and with state variables
relying only on one fixed point. As a side product, our methodology can be used as
a homotopy method to obtain the time-consistent solution.
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1.3 Literature Review

Reputational equilibria as in Backus and Driffill (1985) is a recurrent topic in
this literature. Unlike the reputational equilibria literature we are not aiming at
building setups where a planner of a certain type resembles another type. We aim
at characterizing the solution of planners that can make credible promises, but may
be out of charge when it is time to fulfill them. Our results hold in a more plausible
and standard infinite horizon framework and we are not limited to models without
state variables, as is often the case in reputation models.

Another recurrent topic in this literature is the trigger strategies as in Barro
and Gordon (1983b). This paper is not aimed at building equilibria where private
agents try to enforce a given equilibrium. To enforce a given equilibrium atomistic
private agents need to develop and coordinate on highly sophisticated expectations
mechanisms. Even if such strategies are possible, they are very hard to implement
and may not be enforced every period. Hence, the planner may not always be forced
to fulfil its promises, as in the loose commitment setting.

Flood and Isard (1989) consider a central bank commitment to a rule with escape
clauses. The rule does not incorporate some important shocks affecting the economy.
When such shocks hit the economy it may be better to abandon the rule. One can
interpret that our probability of default is their probability of anomalous shocks.
Another interpretation is that we consider more rational policymakers, who do not
leave important shocks aside the commitment rule. In such interpretation, the rule is
always better and the planner only defaults if the commitment technology becomes
inoperative. An important difference is that our setting can have state variables
being dynamic, while theirs is static.

Persson et al. (2006), elaborating on an earlier proposal of Lucas and Stokey
(1983), suggest a mechanism that makes the commitment solution to be time-
consistent. Each government should leave its successor with a carefully chosen ma-
turity of nominal and indexed debt for each contingent state of nature and at all
maturities. Even though such strategies do eliminate the time-consistency problem,
this structure of debt is not observed in reality. The view of this paper is that
at certain points in time the commitment solution may be enforced, but in some
contingencies discretion is unavoidable.

The paper is organized as follows: section 2 introduces the probabilistic model,
section 3 describes the T-periods model, section 4 applies the previous setups to an
optimal taxation model, section 5 considers an extension with endogenous probabil-
ities and section 6 concludes.
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2 The probabilistic model

We will consider a general model where a planner is not sure whether its promises
will be kept or not. As we had anticipated, this uncertainty can be due to several
factors. For simplicity, we assume that these events are exogenous and that in any
period the economy will experience default or commitment with given exogenous
probabilities. In Section 5, we will relax this assumption. Since it is indifferent
whether it is the same or a new planner that defaults and reoptimizes, we use the
terms ”reelection”, ”new planner” and ”default” interchangeably.

To make matters simple, we abstract from any shock other than the random
variable st describing default (D) or commitment (ND) in period t. It is a straight-
forward generalization to include other sources of uncertainty, but the notation
would be harder to follow. More formally, suppose the occurrence of Default or No
Default is driven by a Markov stochastic process {st}∞t=1 with possible realizations
s̄t ∈ Φ ≡ {D,ND}, and let Ωt be the set of possible histories up to time t:

Ωt ≡ {ωt = {D, {s̄j}t
j=1} : s̄j ∈ Φ, ∀j = 1, ..., t} (1)

We only consider the histories ωt = {D, s̄1, s̄2, ..., s̄t} that start with default. This
is because in the initial period there are no promises to be fulfilled or equivalently
the current government has just been settled. Before turning to the planner we
describe the problem of individual agents.

2.1 Individual agents and constraints

The economy is populated by individual agents such as rational utility maximiz-
ing households and profit maximizing firms. As it is standard to assume, economic
agents maximize their objectives taking as given the actions of the government. We
describe a very general setting where the first order conditions (FOCs) of households
and firms fit the following functional form:

b1(ct(ω
t), kt(ω

t)) + βEtb2(ct+1(ω
t+1), kt+1(ω

t+1)) = 0 (2)

where b1 and b2 are vectors of functions, β is the discount factor, Et denotes rational
(mathematical) expectations using available information. The vectors k and c denote
the set of states and controls from the perspective of the government.

Given our institutional setting, consumers will believe the promises of the cur-
rent planner, but will consider that if a different planner comes into play, then
different policies will be implemented and past promises will not be kept. As it is
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common in the time-consistency literature, economic agents will take future con-
trols that can not be committed upon as functions of the state, i.e. ct+1({ωt, D}) =
Ψ{kt+1({ωt, D})} where we use the short notation {ωt, D} to denote {ωt, s̄t+1 = D}.
Ψ(.) denotes the policy function that rational agents anticipate to be implemented
in future periods.1 The constraint therefore becomes:

b1(ct(ω
t), kt(ω

t))+βProb({ωt, ND}|ωt)b2(ct+1({ωt, ND}), kt+1({ωt, ND})) (3)

+βProb({ωt, D}|ωt)b2(Ψ{kt+1({ωt, D})}, kt+1({ωt, D})) = 0

where we use the short notation Prob({ωt, ND}|ωt) to denote Prob({sj}t+1
j=0 =

{ωt, ND}|{sj}t
j=0 = ωt). The planner will then take as given the FOCs of eco-

nomic agents. In addition, the planner will have other constraints such as feasibility
and its own budget constraint, which either fit the functional form of Eq. (3) or the
following functional form:

kt+1(ω
t+1) = `(ct(ω

t), kt(ω
t)) (4)

Eq. (4) describes the evolution of the states, being ` a vector of functions and where
it is understood that kt+1({ωt, ND}) = kt+1({ωt, D}), ∀ωt.2

2.2 The planner

When default occurs, a new planner is appointed and it will be taking decisions
from that point onwards. Therefore, it is convenient to separate all histories ωt with
respect to the first time that default occurs. This is because we want to know which
histories correspond to which planner. We now define the subset of Ωt of histories
where only commitment as occurred up to time t as:

Ωt
ND ≡ {ωt = {D, {s̄j}t

j=1} : s̄j = ND, ∀j = 1, ..., t} (5)

and the subsets of histories where the first default occurs in period i,

Ωt
D,i ≡ {ωt = {D, {s̄j}t

j=1} : (s̄i = D) ∧ (s̄j = ND),∀j = 1, ..., i− 1}, if i ≤ t (6)

Ωt
D,i = ®, if i > t

1For further discussions on this issue see Klein et al. (2004).
2We consider this formulation for notational convenience. In the presence of additional sources

of uncertainty one should consider the more general form kt+1(ωt+1) = `(ct(ωt), kt(ωt), ωt+1).

6



By construction note that {Ωt
ND, Ωt

D,1, ..., Ω
t
D,t} is a partition of the set Ωt. More-

over, it can be seen that the sets Ωt
ND and Ωi

D,i are singletons.3 Therefore, in order
to avoid confusion between histories and sets of histories, we will refer to these
singleton sets as ωt

ND and ωi
D,i respectively.

In figure 1 we show a more intuitive representation of the particular partition of
histories specified above, where we use the name of the unique history ending in a
given node to denote the node itself. White nodes indicate when a new planner is
settled (default has occurred), while black nodes indicate the cases where the first
planner is still in power (no default has occurred). We can see that in any period t
there is only one history ωt

ND such that commitment has always occurred in the past,
or in other words the planner settled in period 0 is still in charge. Moreover, there
is also only one history ωi

D,i =
{
ωi−1

ND, D
}
, meaning that the first default occurred

in period i. In our institutional setting, a new planner is then settled from the
node ωi

D,i onward and it will make its choices over all the possible histories passing
through the node ωi

D,i, that is the sets Ωt
D,i,∀t ≥ i.

We will now write the problem of the current planner where to simplify notation,
and without loss of generality, we abstract from the presence of constraints in the
maximization problem:

W (k0) = max
{ct(ωt)}∞t=0

ωt∈Ωt

[
∞∑

t=0

∑

ωt
ND

βt{Prob(ωt)u(ct(ωt), kt(ωt))} (7)

+ max
{ct(ωt)}∞t=1

ωt∈Ωt
D,1





∞∑

t=1

∑

ωt∈Ωt
D,1

βt{Prob(ωt)u(ct(ωt), kt(ωt))}





+ max
{ct(ωt)}∞t=2

ωt∈Ωt
D,2





∞∑

t=2

∑

ωt∈Ωt
D,2

βt{Prob(ωt)u(ct(ωt), kt(ωt))}





+ ...]

where we are using the short notation Prob(ωt) = Prob({sj}t
j=0 = ωt). Eq.

(7) makes it explicit that inside the maximization problem of the current govern-
ment there are other planners maximizing welfare during their tenures. Given that
{Ωt

ND, Ωt
D,1, ..., Ω

t
D,t} is a partition of the set Ωt, all the histories are contemplated

3Ωt
ND only contains the history {D, s̄1 = ND, s̄2 = ND, ..., s̄t = ND} and similarly the set

Ωi
D,i only contains the history {D, s̄1 = ND, s̄2 = ND, ..., s̄i−1 = ND, s̄i = D}.
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Figure 1: Diagram of the possible histories

in our formulation. Since ∀ t > i, Ωt
D,i = {ωi

D,i, {s̄j}t
j=i}, we can rewrite the proba-

bilities for ωt ∈ Ωt
D,i in the following way:

Prob(ωt) = Prob(ωi
D,i ∧ ωt) = Prob(ωt|ωi

D,i)Prob(ωi
D,i), ∀ ωt ∈ Ωt

D,i, t ≥ i. (8)

Substituting for these expressions into Eq. (7) and collecting the common term
in the summation, we obtain:
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W (k0) = max
{ct(ωt)}∞t=0

ωt∈Ωt





∞∑

t=0

∑

ωt
ND

βt{Prob(ωt)u(ct(ωt), kt(ωt))} (9)

+
∞∑

i=1

βiProb(ωi
D,i)


 max
{ct(ωt)}∞t=i

ωt∈Ωt
D,i

∞∑

t=i

∑

ωt∈Ωt
D,i

βt−i{Prob(ωt|ωi
D,i)u(ct(ωt), kt(ωt))}








Since we are assuming that any future planner is also maximizing we can define
the value functions:

ξi(ki(ω
i
D,i)) ≡ max

{ct(ωt)}∞t=i

ωt∈Ωt
D,i

∞∑
t=i

∑

ωt∈Ωt
D,i

βt−i{Prob(ωt|ωi
D,i)u(ct(ω

t), kt(ω
t))} (10)

where it was made explicit that each planner assigns probability one to its initial
node. The value functions ξi(ki) summarize the happenings after the node ωi

D,i.
Since Ωt

D,i ∩ Ωt
D,j = ® for i 6= j, the choices of future planners are independent

between themselves. This formulation is very general since one can assume several
institutional settings that the future planners will face. For example, one can assume
that some future planners have full commitment while others do not. For simplicity
we will assume that all future planners face the same institutional settings which
at this stage we do not specify, thus we assume that ξ(ki) = ξi(ki) ∀i.4 Since all
the histories {Ωt

D,1, ..., Ω
t
D,t} are already being maximized by other planners, it is

equivalent to consider that the initial planner maximizes over the single history
{ωt : ωt ∈ Ωt

ND} ≡ ωt
ND instead of ωt ∈ Ωt. We can therefore rewrite the problem

at period t = 0 as:

W (k0) = max
{ct(ω

t
ND

)}∞t=0

∞∑

t=0

{
βt{Prob(ωt

ND)u(ct(ωt
ND), kt(ωt

ND))}

+
∞∑

i=1

βiProb(ωi
D,i)ξ(ki(ωi

D,i))

}
(11)

We will now assume that the random variable st is i.i.d. to further simplify the
problem. It is straightforward to generalize our formulation to Markov processes.

4In a companion paper we relax this assumption, focusing on political disagreement issues.
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Also to simplify notation denote Prob({ωt, ND}|ωt) = π and Prob({ωt, D}|ωt) =
1− π, which implies that:

Prob(ωt
ND)=πt (12)

Prob(ωt
D,t)=πt−1(1− π). (13)

With this formulation at hand we are ready to show that our problem can be
written as a saddle point functional equation (SPFE), and that the optimal policy
functions of the planner are time-invariant and depend on a finite set of states.

2.2.1 The recursive formulation

Collecting results from the previous section, the problem of the current planner
is:

max
{ct(ωt

ND)}∞t=0

∞∑

t=0

(βπ)t{u(ct(ωt
ND), kt(ωt

ND)) + β(1− π)ξ(kt+1(ωt+1
D,t+1))} (14)

s.t : kt+1(ωt+1
ND) = kt+1(ωt+1

D,t+1) = `(ct(ωt
ND), kt(ωt

ND))

b1(ct(ωt
ND), kt(ωt

ND)) + β(1− π)b2(Ψ{kt+1({ωt
ND, D})}, kt+1({ωt

ND, D}))
+ βπb2(ct+1(ωt+1

ND), kt+1(ωt+1
ND)) = 0

Due to the fact that we do have future controls in the constraints through
the term βπb2(ct+1(ω

t+1
ND), kt+1(ω

t+1
ND)), the usual Bellman equation is not satisfied.5

Building on the results of Marcet and Marimon (1998), we show that problems of
this type can be rewritten as a SPFE that generalizes the usual Bellman equation.
This result is summarized in proposition 1.

Proposition 1 Problem (14) can be written as saddle point functional equation as:

W (k, γ) = min
λ≥0

max
c
{hm(c, k, λ, γ) + β(1− π)ξ(k′) + βπW (k′, γ′)} (15)

s.t : k′ = `(c, k)
γ′ = λ, γ0 = 0

where

hm(c, k, λ, γ) = u(c, k) + λg1(c, k) + γg2(c, k) (16)

g1(c, k) = b1(c, k) + β(1− π)b2(Ψ{l(c, k)}, l(c, k)) (17)

g2(c, k) = b2(c, k) (18)

5For details see Stokey et al. (1989).
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Proposition 1 makes it clear that the current planner maximizes utility of the rep-
resentative agent subject to the constraints k′ = `(c, k) and g1(c, k)+βπg2(c

′, k′) = 0,
where the latter is incorporated in hm. If there is no commitment, the continuation
of the problem is ξ(k′). If the current promises will be fulfilled, then the continuation
of the problem is W (k′, γ′), and promises are summarized in the co-state variable
γ′. The optimal policy functions of such problem are time invariant and depend on
a finite number of states, as proposition 2 describes.6

Proposition 2 The solution of problem (14) is a time invariant function with state
variables (kt, γt), that is to say:

ψ(k, γ) ∈ arg min
λ≥0

max
c
{hm(c, k, λ, γ) + β(1− π)ξ(k′) + βπW (k′, γ′)} (19)

s.t : k′ = `(c, k)
γ′ = λ, γ0 = 0

2.3 Equilibrium

In the institutional setting built in Eq. (14), we only assume that all planners
from period 1 onward will face the same problems. From now on, we also assume
that all future planners face the same institutional setting as we specify in period
0. In other words, we specify their problems in the same way as the problem of the
planner in period 0.7 Thus we can use the following definition of equilibrium.

Definition 1 A Markov Perfect Equilibrium where each planner faces the same
institutional setting must satisfy the following conditions.

1. Given Ψ(k) and ξ(k), the sequence {ct} solves problem (14);

2. The value function W (k, γ) is such that ξ(k) = W (k, 0) ≡ W (k);

3. The policy functions ψ(k, γ) solving problem (14) are such that Ψ(k) = ψ(k, 0).

The second part of the definition imposes directly that the problem of the ini-
tial and future planners must be equal. The third part of the definition imposes
a consistency requirement in the constraints. More precisely, we require the policy
function Ψ(k) that agents expect to be implemented under default to be consistent

6As it is common in the time-consistent literature we do not prove that the optimal policy
function is unique. Nevertheless, we found no evidence of multiple solutions.

7In a companion paper, we relax this assumption and focus on political disagreement issues.
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with the optimal policy function. We refer to the notion of Markov Perfect Equilib-
rium because the function Ψ only depends on the natural state variables k. Also, in
this equilibrium neither the planner nor individual agents desire to change behavior.
Individual agents are maximizing and their beliefs are correct. The planner, taking
as given Ψ and ξ = W , is also maximizing.

2.4 Solution strategy

There are different ways to solve our problem. One approach would be to prove
that iterating on the SPFE is a contraction. By doing so, we could solve our problem
in a very similar way to the usual value function iteration. We will follow a different
approach, we will solve our problem using FOCs to the lagrangian. Our generic
problem is:

W (k0) = Max
{ct,kt+1}∞t=0

∞∑
t=0

(βπ)t [u (ct, kt) + β (1− π) ξ (kt+1)] (20)

s.t. kt+1 = ` (ct, kt)

g1 (ct, kt) + βπg2 (ct+1, kt+1) = 0

∀t = 0, ...,∞
where g1 and g2 are defined by Eqs. (17, 18) respectively.

Details on the FOCs can be found in the appendix. It is important to mention
that the term ξk,t+1 appears in the FOCs. As we had anticipated, the current
planner will try to influence future planners. The value function ξ (kt+1) summarizes
the welfare that agents will achieve with a planner appointed at t + 1. From the
perspective of the planner appointed at t + 1, the state variables kt+1 can not be
changed. Nevertheless, from the perspective of the current planner, who is in charge
at period t, kt+1 can be manipulated.8 The FOC with respect to kt+1, thus considers
both the possibility that the current planner stays in power and the possibility
that a new planner is appointed. In the case that a new planner is appointed the
current planner can only affect future decisions through the states kt+1, which in
turn influence the value function ξ (kt+1).

The FOCs expressed in Eqs. (39-42) allows us to solve for the optimal policy. If
the problems of the current and future planners differs, we could proceed in the fol-
lowing way. We could first obtain the value functions ξ (kt+1) and the optimal policy

8Note that, when default occurs, the lagrange multiplier is set to zero and cannot be used to
influence incoming planners.
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functions Ψ (kt+1) corresponding to future planners. Given ξ (kt+1) and Ψ (kt+1),
we could then solve for the policy functions of the current planner.

As described in Definition 1, we are particularly interested in the formulation
where future planners face the same problem as the current planner, i.e. where
ξ (kt) = W (kt) and hence ξk,t+1 = Wk,t+1. In this case, one possible solution strategy
relies on the solution of two fixed points. In a first step, we could guess the functions
Wk,t+1. We could then solve for the optimal policy ct = ψ(kt, λt−1). This second step
would involve solving a fixed point problem, because according to our equilibrium
definition Ψ(k) = ψ(k, 0), ∀k. Once obtained the policy function, we could update
our guess of W and Wk,t+1 and repeat the procedure until convergence.

We will show a solution method that only relies on solving one fixed point. To
obtain the derivative Wk,t+1 we can use envelope results, which are summarized in
result 1.

Result 1 Using envelope results it follows that:

∂W (kt)

∂kt

=
∂u [ct (kt) , kt]

∂kt

+ vt`k,t + λtg1,k,t (21)

where all variables are evaluated using the optimal policy of a planner appointed in
period t, given the state kt.

Result 1 uses the fact that the planners are maximizing a function, which allows
the use of envelope principles.9 It is important to note that in Eq. (21) all the
variables are evaluated with the optimal policy that the government elected at t
implements. For instance, one has to bear in mind that the policy function at time
t of a planner appointed at t does not depend on the lagrange multiplier.

By Definition 1, the policy functions that the current and future planners imple-
ment are equal. If we use the envelope result to substitute ξk,t+1 = Wk,t+1, the FOCs
only depend on the functions ψ(kt, λt−1) and Ψ(k), where Ψ(k) = ψ(k, 0),∀k. We
can use a collocation method to solve for the optimal policy functions. This solu-
tion method is simpler, because it relies on one fixed point instead of two. As a side
product, our methodology can be used as a homotopy to obtain the time-consistent
solution. Starting from the time-inconsistent solution, one can gradually reduce the
probability of commitment to zero in order to obtain the time-consistent solution.

We want to stress that in our framework global solution methods proposed in
Judd (1992) and Judd (2004) are much more appropriate. The linear quadratic ap-
proximation proposed in Benigno and Woodford (2004) or Benigno and Woodford

9A proof of this envelope result is available upon request.
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(2006) is only valid in a timeless perspective. The timeless perspective assumes
that initial commitments are equal to the steady-state commitment, not being use-
ful to analyze transition dynamics. There are several reasons that make the linear
quadratic approach inappropriate in our framework. Firstly, we consider that com-
mitments may be broken and consequently we need to focus on transition dynamics.
Secondly, our model does not have a steady state point around which one can take
an approximation. Thirdly, under discretion the allocations can be very far from the
commitment steady-state. Our method is more suitable and it is also simpler. Even
for an exactly linear quadratic model Schaumburg and Tambalotti (2005) need to
solve three fixed points to get their solution using a less reliable method.

Beside these numerical considerations, there is an important drawback of apply-
ing the linear-quadratic approach to study problems with loose commitment settings.
Indeed, as shown by Debortoli and Nunes (2006), a correct linear-quadratic approx-
imation of a general model can only be derived by imposing the timeless perspec-
tive approach. However, allowing for the occurrence of a default explicitly violates
the timeless perspective assumption. Therefore, applying the linear-quadratic ap-
proach to study problems characterized by loose commitment contradicts the micro-
foundations of the original model.

3 T-periods model

We will now consider another institutional setting, where a planner knows that
it will be in charge during T periods. After that a new planner is appointed. As in
previous sections, we will assume that the future planner faces the same institutional
settings as the initial planner. Using the same notation as in section 2, we can write
the problem as:

W (k0) = max
{ct}T−1

t=0

T−1∑

t=0

(β)t{u(ct, kt)}+ βT W (kT ) (22)

s.t : kt+1 = `(ct, kt), t = 0, 1, ..., T − 1.

b1(ct, kt) + βb2(ct+1, kt+1) = 0, t = 0, 1, ..., T − 2.

b1(ct, kt) + βb2(Ψ0{kt+1}, kt+1) = 0, t = T − 1.

The objective function includes the instantaneous utility of all the periods during
the tenure and the value function of the future planner. The constraints that the
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planner faces reflect the institutional setting just described. Up to the last period,
the current planner can credibly commit. In the last period of the tenure, private
agents know that in the next period another planner will be appointed and no
credible promises can be made. Therefore, private agents expect that in period T a
new planner implements the policy function Ψ0.

By appealing to standard dynamic programming techniques, it is clear that the
policy functions of the planner appointed at t = 0 are equal to the policy functions
of the planner appointed at t = T . The proof of such result is simple and only
requires to consider the tenure of each planner as one big period and use infinite
horizon dynamic programming results.10

Proposition 3 Denote Ψj,i as the optimal policy function of a planner appointed
at t = j in the time period t = j + i. That is to say,
{Ψj∗T,0(kj∗T ), Ψj∗T,1(kj∗T ), ..., Ψj∗T,T−1(kj∗T )} = ψ(k) where

ψ(k) ∈ arg max
c

Problem (22)

Then Ψj∗T,i(k) = Ψ(j+1)∗T,i(k), ∀k, j, 0 ≤ i ≤ T − 1.

The previous proposition states that the solution of problem (22) is a tenure
invariant function with state variables (k). It is important to stress that we are not
claiming that the policy functions are time-invariant. Indeed, the policy function
that a planner implements in one period is different from the policy function that
the same planner implements in another period. Another important remark in
Proposition 3 is that we are only considering the state variables when the tenure
begins. A planner appointed in t = 0 will implement policy functions for all the
periods t = 0, 1, ...T − 1 that only depend on the initial state k0. If the model
would have some sources of shocks, such as productivity, the state-space would be
huge. Since we just kept shocks away for notational convenience, we want to use
techniques that can easily incorporate exogenous shocks. To do so we will solve
for policy functions that depend on the past lagrange multiplier and the past state
variable.11 These policy functions are still time variant but tenure invariant. As
before, we can apply envelope results, which allow us to simplify our problem to a
single fixed point. The FOCs of this problem are easily obtained and for brevity we
will not state them here.

10Another proof follows from applying finite horizon dynamic programming results and using
the definition that the problems of different planners are equal.

11We can do so by using the results of Marcet and Marimon (1998) in a finite horizon economy.
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4 An optimal taxation problem

In the previous sections we have formulated optimal policy problems in a general
form. We will now refer to a specific optimal taxation problem mentioned in Marcet
and Marimon (1998) and Klein et al. (2004). We chose this model because it is a
benchmark in the literature, where both the commitment and discretion solutions
have been analyzed. A representative household derives utility both from private
{ct} and public consumption {gt}. The representative agent rents capital {kt} to
a firm and inelastically supplies one unit of labor. Capital and labor markets are
competitive, but financial markets are not available to the government. Thus, the
government collects taxes {τt} and provides the public good under a balanced budget
constraint. The household problem is:

max
{kt+1,ct}∞t=0

E0

∞∑
t=0

βtu(ct, gt) (23)

s.t : ct + kt+1 = kt + (1− τt)[wt + (rt − δ)kt]

where r, w, β and δ refer to the interest rate, wage, the discount factor and the
depreciation rate respectively. There is uncertainty in this economy because it is
not know in advance whether the planner will default or not. Wages and interest
rates are determined in perfectly competitive markets:

rt = fk(kt) (24)

wt = f(kt)− fk(kt)kt (25)

where yt = f(kt) is production. The FOCs of the households are:

uc(C(kt, kt+1, gt), gt) = βEtuc(C(kt+1, kt+2, gt+1), gt+1){1+[1−T ((kt+1, gt+1)][fk(kt+1)−δ]} (26)

where we have already substituted the interest rate, the resource constraint and the
balanced budget condition, which are described by:

ct ≡ C(kt, kt+1, gt) = f(kt) + (1− δ)kt − kt+1 − gt (27)

τt ≡ T (kt, gt) = gt/(f(kt)− δkt) (28)

As in Klein et al. (2004), we also consider the possibility that the government only
taxes capital income and therefore τt ≡ T (kt, gt) = gt/((rt − δ)kt). In these models
the government would like to manipulate expectations. If the government commits
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to low taxes tomorrow, then private agents will accumulate more capital and the
government can have low taxes today. In principle, lower taxes will mean less public
consumption. Note that the government may promise high taxes tomorrow, because
this gives an incentive to tax more today and provide more public consumption. For
further discussions on this issue see Klein et al. (2004).12

In order to proceed to the numerical solution, we specify a per-period utility
function:

u(ct, gt) = log(ct) + γg log(gt) (29)

and a standard production function:

yt = kα
t (30)

We use a standard calibration for an annual model of the US economy. Table 1
summarizes the values used for the parameters.

Table 1: Parameter values
β δ α γg

0.96 0.08 0.36 0.50

4.1 Probabilistic Model

We now consider the probabilistic model introduced previously. In case of de-
fault, households believe that kt+2 and gt+1 will be given by the functions h(kt+1)
and Ψ(kt+1) respectively. Households anticipate the changes in power and therefore
Eq. (26) is written as:

uc(C(kt, kt+1, gt), gt) = (31)
= βπuc(C(kt+1, kt+2, gt+1), gt+1){1 + [1− T ((kt+1, gt+1)][fk(kt+1)− δ]}
+ β(1− π)uc(C(kt+1, h(kt+1), Ψ(kt+1)), Ψ(kt+1)){1 + [1− T ((kt+1, Ψ(kt+1))][fk(kt+1)− δ]}

If one is tempted to match political cycles with commitment cycles, then the
value of 0.75 is realistic, since it corresponds to a planner being in office during 4
years on average. A calibration based on the political history of the US implies a

12The result that the government commits to higher taxes may seem strange to the reader.
However, note that Chamley (1986) setup is very different from ours. For simplicity we are not
considering different tax rates on capital and labor and we have balanced budget every period.
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Table 2: Capital Income Tax - Average Values

0,00 0,25 0,50 0,75 1,00

k 1,602 1,663 1,755 1,918 2,366
g 0,232 0,230 0,227 0,222 0,203
y 1,185 1,201 1,224 1,264 1,364
c 0,825 0,838 0,857 0,889 0,971
τ 0,776 0,768 0,756 0,735 0,673
λ 0,000 -0,205 -0,541 -1,227 -3,644

value of 0.8, while the political history of Italy would imply a calibration around 0.
We will first examine the model where only capital income is taxed. Table 2 shows
average allocations in the economy. In this case, discretion implies higher taxes,
which induce lower capital accumulation and consumption but more provision of
the public good. The first feature that one should stress is that average allocations
in the economy seem to be closer to the discretion solution rather than to the com-
mitment one. It may be expected that decreasing the probability of commitment
by 25% would make the allocation to move by 25% of the difference between com-
mitment and discretion. Nevertheless, a decrease in the probability of commitment
from 1 to 0.75 leads to a bigger change in the average allocations of the economy to-
wards the discretion steady state. For example, in the capital income tax model the
absolute drop in capital is already 59% of the difference between full commitment
and discretion.

Figure 2 plots the average path during the first 25 quarters, if one starts at the
steady state value of capital under default and no promises have been made. The
picture confirms the results of table 2, since the path for π = 0.75 is relatively closer
to the discretion path. Also notice that in the commitment solution, as credibility
starts to build, taxes and public consumption start to be lowered gradually. In
figure 3 we plot the paths followed for a given history. We consider the history
where by chance a new planner is reappointed every four years. There are noticeable
differences in the accumulation path of capital. It is not just the realization of default
or commitment that makes allocations to change. Even considering the same history,
the policies that the government implements lead to different allocations. The figure
also shows that, when a new planner is reappointed, taxes and public consumption
jump to high levels. Only after this initial increase do these variables start to be
decreased gradually.

We now turn attention to the case where total income is taxed. Average allo-
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Table 3: Total Income Tax - Average Values

0,00 0,25 0,50 0,75 1,00

k 4,391 4,387 4,379 4,363 4,259
g 0,408 0,409 0,411 0,416 0,447
y 1,703 1,703 1,702 1,700 1,685
c 0,944 0,943 0,940 0,934 0,897
τ 0,302 0,303 0,304 0,308 0,333
λ 0,000 -0,048 -0,135 -0,334 -1,453

cations are shown in table 3. Again the result is that average allocations get away
from the commitment steady state quite quickly. Figure 4 plots average paths and
figure 5 plots the paths for a specific realization, where a new government is reap-
pointed every four years. The conclusions are the same as before. The fact that a
new planner is reappointed creates a change in policy. Nevertheless, for the same
history different policies induce non-negligible differences in capital accumulation
and output.

We finally focus on implications for welfare. Table 4 shows the welfare gains
for different probabilities of commitment. We have normalized the welfare gain of
moving from complete discretion to full commitment to 1. The first line refers to
the situation where only capital income is taxed. When the probability of default
increases from 0 to 0.25, we see that only 15% of the benefits of commitment are
achieved. Even when the probability of commitment is 0.75, the gains of commit-
ment are 60%. The pattern of this table is that at low levels of credibility the welfare
gains from increasing commitment are low. Most of the gains from commitment can
only be achieved when credibility is already high. This pattern is even more pro-
nounced in the model where all income is taxed. Even if the probability of keeping
past promises is 0.75, only 39% of the gains are achieved. This is an important
result in our paper. For low levels of credibility, increasing credibility leads to small
relative gains in welfare.

Schaumburg and Tambalotti (2005) found the opposite result in a linear-quadratic
application without state variables to the Barro-Gordon model. Our results together
with theirs suggest why economists and policy makers have devoted considerably
more attention to increase monetary policy credibility, but have almost ignored
fiscal policy credibility. The institutional changes aimed at building central bank
credibility in the 80’s were justified by the potential welfare gains when credibility
is low. Nowadays, central banks have more credibility but they have not fully com-
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Table 4: Welfare Gain

0 0,25 0,5 0,75 1

Capital Income Tax 0,000 0,150 0,344 0,608 1,000
Total Income Tax 0,000 0,066 0,175 0,392 1,000

mitted to any future action or rule. The reason seems to be that the benefits of
increasing credibility even further are small.

Our results suggest that, in this regard, fiscal policy is very different from mone-
tary policy. The relative welfare gains from commitment are convex, not concave. If
one believes that fiscal policy credibility is unlikely to be high, increasing credibility
of the fiscal authority from low to moderate levels will just lead to small relative
gains in welfare. One could alternatively interpret our welfare results in an opposite
way; one could claim that fiscal credibility must be fully achieved, since small temp-
tations to act discretionally lead to high relative welfare losses. Nevertheless, it may
be difficult to establish a highly credible fiscal authority, because such institution
would interfere with democratic and political choices. Direct welfare comparisons
indicate that monetary policy credibility may be more important. In the capital and
total income model presented in this paper, the commitment solution improves wel-
fare by 3,5% and 0,4% respectively.13 In Barro-Gordon type of models commitment
improves welfare by much larger amounts.14 These considerations may provide a
justification for the low interest among academics and policy makers in increasing
fiscal policy credibility.

4.2 T-Periods Model

In this section we will apply the T-periods setting to the fiscal policy model
described previously. For brevity considerations we skip the FOCs and we proceed
directly with the analysis. This model displays political cycles. Figure 6 and figure

13To keep comparability with Schaumburg and Tambalotti (2005) welfare was computed as
life-time utility. The relative gains (values reported in the tables) are unchanged if we use the
compensating variation in (private and public) consumption. The improvement from discretion to
commitment does change to 2,19% and 0,13% in the capital and total income model respectively.

14In Barro-Gordon models the welfare loss penalizes quadratically deviations of inflation from
zero and deviations of the output gap from a target level. The inflation and output gap under
commitment are nearly zero. Under discretion the inflation is quite high and the output gap is
still zero. Since standard calibrations give a much higher weight to inflation deviations in the loss
function, the gains from commitment are substantial.
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Table 5: T-period model - Capital Income Tax - Average Allocations
DEF 2 4 8 COM

k 1,602 1,700 1,837 1,995 2,366
g 0,232 0,229 0,225 0,219 0,203
y 1,185 1,211 1,245 1,282 1,364
c 0,825 0,846 0,873 0,904 0,971
τ 0,776 0,764 0,746 0,725 0,673
λ 0,000 -0,315 -0,825 -1,538 -3,644

Table 6: T-period model - Total Income Tax - Average Allocations
DEF 2 4 8 COM

k 4,391 4,385 4,375 4,357 4,259
g 0,408 0,410 0,413 0,418 0,447
y 1,703 1,703 1,701 1,699 1,685
c 0,944 0,942 0,938 0,932 0,897
τ 0,302 0,303 0,306 0,310 0,333
λ 0,000 -0,071 -0,199 -0,406 -1,453

7 plot the paths for planners facing different tenure lengths. During each tenure,
allocations move towards commitment values. When past promises are broken there
is a sudden movement towards the discretion value. Longer tenures allow allocation
to be closer to the full commitment solution.

We compare average allocations when the planner knows with certainty that will
be in charge during 1,2,4,8 and infinitely many periods. Obviously, the extreme
values considered correspond to the default and commitment cases. Given the po-
litical history of the US, tenures of 8 periods can be considered an upper bound,
while tenures of 4 years have been the norm. Tables 5 and 6 present the average
allocations for the capital income and total income taxation model respectively. In
the capital income model, for the benchmark tenure of 4 periods, capital moves to-
wards discretion by 69% of the total difference between discretion and commitment.
Regarding the total income model, the same analysis shows that capital moves by
88% of the difference between commitment and discretion. Hence, results show that
average values are still close to the discretion case both for the capital and the total
income taxation model. Table 7 shows the results for welfare. In the more realistic
total income taxation model, when the planner knows that will stay in power during
4 years, only 27% of the welfare gain is achieved.
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Table 7: Welfare Gain T-period model
DEF 2 4 8 COM

Capital Income Tax 0,000 0,256 0,528 0,745 1,000
Total Income Tax 0,000 0,102 0,266 0,492 1,000

5 Extension - endogenous probabilities.

We are finally going to consider an extension where the probability of defaulting
depends on the states of the economy. Since capital is the only natural state variable
in the economy and all allocations depend on capital, we will consider that the
probability of defaulting today depends on the current capital stock. We think it
is plausible to assume that when capital is higher there is a higher probability of
reelection. We will consider the following probability function:

F (kt) = 1− 1

(kt

k̃
)ρ + 1

(32)

where k̃ and ρ are parameters to be defined. Note that k̃ is a normalization such
that F (k̃) = 0.5 and that the higher is ρ, the easier it is for the planner to influence
its reelection probability. In the case of ρ = 0 the probability is always constant.
The planner and households will consider that the probability of commitment in
the next period is F (kt+1) instead of π. For instance, the objective function of the
planner is:

∞∑
t=0

βt
Πt

j=0(F (kt))

F (k0)
{u(ct, kt) + β(1− F (kt+1))W (kt+1)} (33)

All the proofs considered previously also apply in this setting using minor mod-
ifications.15 We can use a homotopy from the model in section 2 to this model by
changing ρ from 0 to the desired value. This model raises an extra difficulty, because
both the derivative and the level of the value function appear in the FOCs, hence
one also needs to approximate the value function. We choose ρ = 5 and k̃ to be
equal to the average capital allocation when π = 0.5. Our normalization of k̃ allows
us to directly compare the results with the probabilistic model when π = 0.5.

15It is useful to redefine the objective of the planner using the definition θt+1 = θtF (kt+1),
with θ0 = 1. Note that the special term on F (k0) in the objective function does not induce any
time-inconsistency problem because k0 is predetermined.
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Results are presented in table 8 both for the capital income and the total income
model. We see that capital is now higher. Since the probability of commitment is
increasing in capital the planner has a further motive to accumulate capital. In the
capital income model this effect is quite visible, while in the total income model
this effect is more subtle.16 Similarly, if we turn our attention to welfare, we notice
that in the capital income model with endogenous probability the gain is 54.3% of
the the total gain from commitment. This value is much higher than the welfare
gain of 34.5% obtained in the benchmark case of π = 0.5 (as reported in table 4).
In the total income model, welfare with endogenous probability is almost identical
to the benchmark case of π = 0.5. There are two reasons for this discrepancy.
First, in the capital income model higher probability of commitment leads to higher
capital, which in turn increases the probability of commitment. This self reinforcing
mechanism is not present in the total income model. The second reason is that the
pure discretion and pure commitment solutions in the first model are very different,
while this is not so in the second one. Overall, our results suggest that governments
accumulate more capital to be reelected, and this is a good policy since it reduces
political turnover increasing the commitment probability.

Table 8: Endogenous Probability - Average Values
Capital Income Tax Total Income Tax
π = 0.5 End. Prob. π = 0.5 End. Prob.

k 1.755 1.896 4.379 4.381
g 0.227 0.222 0.411 0.411
y 1.224 1.259 1.702 1.702
c 0.857 0.885 0.940 0.941
τ 0.756 0.738 0.304 0.304
λ -0.541 -0.864 -0.135 -0.134

6 Conclusions

The time-consistent and time-inconsistent solutions can differ dramatically in
some models. It is not clear which assumption on the planners commitment tech-
nology is more plausible. It seems more realistic to consider that planners only face
some loose commitment technology. We have considered different formulations of

16If we increase ρ in the total income taxation model then capital starts to be visibly higher.
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loose commitment and applied these tools to optimal fiscal policy. We considered a
setup where the fiscal authority is reappointed every period with a given probabil-
ity, another setup where the fiscal authority stays in power for T periods and finally
a setup where the probability of reelection is endogenous. Combining these polar
cases are straightforward extensions. Even though our settings may be naturally
interpreted in the spirit of political turnover, one can also consider that the same
planner may default on its own plans and reoptimize.

From the methodological point of view, our contribution is to show a solution
technique for problems of limited commitment with the following main features.
First, it can be applied to a wide class of non-linear models, with or without state-
variables keeping the model’s micro-foundations structure intact. Second, building
on the results of Marcet and Marimon (1998), we proved that the solution to our
problem is recursive. Third, we implement an algorithm which is relatively inexpen-
sive, because it only requires the solution of one fixed-point, and makes use of global
approximation techniques which are pointed out in the literature as more reliable.
Finally, as a by-product, our procedure can be used as a homotopy method to find
the time-consistent solution.

We show that in our optimal taxation model under loose commitment average
allocations seem to be closer to the time-consistent solution. We find out that at
low levels of credibility, further credibility does not lead to large welfare gains. To
achieve most of the commitment gains, credibility has to be high. These results are
in sharp contrast with those obtained in the literature regarding monetary policy.
We believe that our results give support for the low interest in building independent
or credible fiscal authorities.

There are many interesting applications of our frameworks. We are continuing
and extending this line of research. In a companion paper we analyze the interactions
between fiscal and monetary policy. In another companion paper we consider the
case where different planners have different objectives. For the sake of tractability,
but not of plausibility, the literature on political economy has not yet considered
that parties with different tastes may still commit taking into account the possibility
of reelection.
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A Proofs

Proof. of Proposition 1
Drop history dependence and define:

r(ct, kt) ≡ u(ct, kt) + β(1− π)ξ(l(ct, kt))

g1(ct, kt) ≡ b1(ct, kt) + β(1− π)b2(Ψ{l(ct, kt)}, l(ct, kt))

g2(ct+1, kt+1) ≡ b2(ct+1, kt+1)

Our problem is thus:

max
{ct(ωt)}∞t=0

ωt=ωt
ND

∞∑

t=0

(βπ)t{r(ct, kt)} (34)

s.t : kt+1 = `(ct, kt)
g1(ct, kt) + βπg2(ct+1, kt+1) = 0

which fits the definition of Program 1 in Marcet and Marimon (1998). To see this
more clearly note that our discount factor is βπ and we have no uncertainty. Since
ωt

ND is a singleton, we have previously transformed our stochastic problem into a
non-stochastic problem. Therefore, we can write the problem as a saddle point
functional equation in the sense that there exists a unique function satisfying

W (k, γ) = min
λ≥0

max
c
{h(c, k, γ, λ) + βπW (k′, γ′)} (35)

s.t : k′ = `(c, k)
γ′ = λ, γ0 = 0

where
h(c, k, λ, γ) = r(c, k) + λg1(c, k) + γg2(c, k) (36)

or in a more intuitive formulation define:

hm(c, k, λ, γ) = u(c, k) + λg1(c, k) + γg2(c, k) (37)

and the saddle point functional equation is:

W (k, γ) = min
λ≥0

max
c
{hm(c, k, λ, γ) + β(1− π)ξ(k′) + βπW (k′, γ′)} (38)

s.t : k′ = `(c, k)
γ′ = λ, γ0 = 0
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Proof. of Proposition 2: Using Proposition 1, this proof follows trivially from the
results of Marcet and Marimon (1998).

B First Order Conditions - Probabilistic Model

To solve the problem first set up the Lagrangian, using νt and λt as Lagrange
multipliers for the two constraints. Thus, we need to find the FOCs of the following
problem:

Min
{νt,λt}∞t=0

Max
{ct,kt+1}∞t=0

L =
∞∑

t=0

(βπ)t u (ct, kt) + β (1− π) ξ (kt+1)

+ νt (` (ct, kt)− kt+1) + λt (g1 (ct, kt) + βπg2 (ct+1, kt+1))

The FOCs are17:

∂L

∂ct
: uc,t + vt`c,t + λtg1,c,t + λt−1g2,c,t = 0 (39)

∂L

∂kt+1
: β (1− π) ξk,t+1 − vt + βπ (λtg2,k,t+1 + uk,t+1 + λt+1g1,k,t+1 + vt+1`k,t+1) = 0 (40)

∂L

∂νt
: kt+1 = ` (ct, kt) (41)

∂L

∂λt
: g1 (ct, kt) + βπg2 (ct+1, kt+1) = 0 (42)

∀t = 0, ...,∞ λ−1 = 0

where, using Eqs. (17,18) it follows that:

g1,c,t = b1,c,t + β (1− π) [`c,t (b2,c,t+1Ψk.t+1 + b2,k,t+1)]

g2,c,t = b2,c,t

g1,k,t = b1,k,t + β (1− π) [`k,t (b2,c,t+1Ψk.t+1 + b2,k,t+1)]

g2,k,t = b2,k,t

17For notational simplicity we treat k and c as scalars instead of vectors. The symbol fx,t indi-
cates the partial derivative of the function f(xt) with respect to xt. We suppressed the arguments
of the functions for readability purposes.
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Figure 2: Capital Income - Average Allocations
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Figure 3: Capital Income - Default every 4 periods
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Figure 4: Total Income - Average Allocations
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Figure 5: Total Income - Default every 4 periods
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Figure 6: Capital Income - T-periods model
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Figure 7: Total Income - T-periods model
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